
One of the most widely used portable tech -

niques for rapid identification of unknown

compounds (such as testing of fine chemicals,

measurement of pharmaceutical ingredients, or

authentication of drug compounds) is Raman

spectroscopy2-4. The economic5 and technical6

benefits of handheld Raman spectrometers

have been well discussed in open literature, but

one area where there is confusion for many users

of this technology (novice and experienced

alike) is in regards to the different statistical

algorithms which are used for on board analysis

of spectra. In this article, we will discuss the two

most common mathematical representations

used with handheld Raman spectroscopy as

decision-making tools for spectroscopic data:

Hit Quality Index (HQI) and significance level 

(p-value). Generally, HQI is the preferred method

for library matching of unknown materials, and

p-value is best suited for verifying the identity of

a known material. Here we will discuss specific

examples for the use of each tool. 

Library matching 
Library matching is a well-established method in

spectroscopy for the investigation of unknown

materials and is commonly used for identifica -

tion of materials from an FTIR, NIR or Raman

spectrum7-11. This is typically performed by cross-

correlating the measured spectrum of a material

against a validated library of spectra of known

materials. The degree of correlation (similarity)

of each potential match is then quantified by a

calculation of HQI defined by:

Equation (1)

HQI represents the spectral correlation

coefficient between the two spectra by taking

the dot product of the unknown material and
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the library spectra squared, divided by the 

dot product of the library spectrum with 

itself multiplied by the dot product of the

unknown spectrum with itself. The value of HQI

is between 0 to 1.0, with higher values

representing a measure of greater likeness

between a sample spectrum and a library

reference. When scaling by 100, a perfect match

would be 100, indicating that the correla-

tion between the sample and reference is 1. 

With this information, a ‘match’ / ‘no match’

decision can be automated by the selection 

of a suitable minimum HQI limit as shown in

Figure 1. Dependent on the application, HQI

limits are typically set between 80 and 99, 

but a typical practice in the pharmaceutical

industry is to set the minimum HQI for a match

to 958,9. It is import ant to note that the HQI is not

a measure of the purity of the material in

question; rather it is simply a measure of correla -

tion between the library reference spectra and

the unknown spectrum. 

It is also important to note that correlation

techniques do not provide any information

about the probability that the match is valid.

Additionally, HQI is not particularly sensitive to

small spectral changes, and misidentification

can occur between similar materials. As a result,

library matching is primarily used as a tool for

investigation of unknown materials, where one

needs to quickly compare the spectrum of an

unknown material against a number of potential

spectral matches, as shown in Table 1. HQI is not

recommended to qualify the identity of a known

material; instead, a p-value is recommended for

this application.

Identity verification
In order to verify the identity of a ‘known’

material, it is necessary to use a more advanced

statistical approach to ensure that the proba -

bility for the material being what it is supposed

to be is above a certain threshold (typically 

95 per cent confidence). There are various

mathematical approaches which can be used to

classify samples, each with varying degrees of

precision and robustness. In this article, we will

focus on the Soft Independent Modelling of

Class Analogy (SIMCA) method which was

pioneered by Svante Wold in the 1970s and

1980s12 and is currently utilised in the NanoRam

handheld Raman spectrometer (B&W Tek, USA).

This multivariate analysis approach, based on

developing principal component analysis (PCA)

models for each material to model the struc -

tured variance of each class, is a widely used

classification tool12- 14.
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Figure 1: Screen shots of a spectral “Match” for
levofloxacin Hydrochloride showing a ~100 HQI (left)
and a spectral “No Match” (right) using the NanoRam
(B&W Tek, USA) in Investigation Mode

Figure 2: Chemical structures of the three 
amino acids measured

Table 1: HQI results for Raman spectra of amino acids compared with each other

Table 2: p-value results for Raman spectra of amino acids compared with each other



SIMCA is based upon the determination of

similarities within each class, making it ideal for

the verification of known compounds. Details 

of the SIMCA method are well described in

literature12-15, but can be summarised by the

following steps:

1. Measure a training set of spectra for a

desired material using a sample set of

materials that have been verified using an

approved analytical method (such as

chromatography or mass spectrometry)

a. It is important to note that the larger

and more representative the sample set

is, the more robust the final method will

be. When developing methods on the

NanoRam (B&W Tek, USA), a minimum

of 20 spectra are required, but the user

may also choose to add additional

spectra to increase the robustness of

the model

2. Develop a principal competent analysis

(PCA) model with the training set and

establish the membership limits based on a

95 per cent confidence level

3. Measure the spectrum of a new sample, and

project it onto the PCA model to see if it lies

within the model limits.

Once a method has been developed, its limits

are defined by a confidence interval on the

model, which provides the multivariate

acceptance distance for new samples. When

new samples are measured and projected onto

the model, the sample distance to the model

can be compared with the acceptance limit (the

Hotelling’s T2), and from this the probability of a

sample belonging to the class is determined.

This is done by taking advantage of the mathe -

matical relationship between the T2 distribution
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Figure 4: Screen shots of an identification “Pass” 
for L-Cysteine Hydrochloride showing p-value = 0.938
(left) and an identification “Fail” (right) showing a 
p-value of 2.065 x 10-9 using the NanoRam 
(B&W Tek, USA) in the Identification Mode

Figure 3: Raman spectrum of L-alanine, L-aspartic acid, and L-cysteine hydrochloride (a), PCA scores plot of 
all three samples showing unique clusters (b), PCA scores plot for the results of SIMCA based identification 
of L-cysteine hydrochloride (c)



and the F-distribution. Therefore, it is possible to

calculate the F-value, which is a measure of the

variability on the population, under the null

hypothesis. Then, the F-value can be used to

calculate the p-value, allowing for the deter -

mination of the probability of the material in

question being the material used for the

development of the model and defining

acceptable boundaries for material acceptance. 

The definition of the p-value is the

probability of getting an observed value more

extreme than your estimated result when there

is no effect in the population. Therefore, con -

sidering the hypothesis: ‘the container labelled

as raw material A contains raw material A’, 

where the null hypothesis (Ho) is Ho = material A;

and the positive alternative (H1) is H1 = not

material A, the p-value represents the smallest

level of significance at which the H0 will be

rejected assuming that the null hypothesis is

true. So, if the p-value is ≥ 0.05 (which represents

a confidence level of 95 per cent), the product is

accepted and material A is verified as material A,

but if the p-value ≤ 0.05, then material A is not

verified and will be rejected. 

Figure 3 (page 3) shows the results of 

three methods which were developed on the

NanoRam (B&W Tek, USA) for L-alanine (I), 

L-aspartic acid (II), and L-cysteine hydrochloride

(III). It should be noted that their structures are

quite different and could be identified

unambiguously using an HQI value as previously

shown in Table 1 (page 2).

Figure 3a (page 3) shows an overlay of

representative spectra which were measured for

the method development of each material. 

An overview PCA Scores plot for all three

materials is shown in Figure 3b (page 3),

illustrating that the materials are separated into

unique clusters that were analysed in this

overview. Finally, Figure 3c (page 3) shows a test

set containing three measurements of each

material projected onto the cysteine hydro -

chloride method. All three samples of Cysteine

hydrochloride fall within the confidence interval

while the other six spectra were clearly outside

the Hotelling’s T2 ellipse at the 95 per cent

confidence level, also defined by the five per

cent significance level. Similar results are

obtained for the method for the other two

amino acids as well.

This result allows for the statistical

determination of a ‘pass’/’fail’ decision when

analysing a measured spectrum, as shown in

Figure 4 (page 3). In this case, the significance

level used in the development of the method

plays a similar role to the minimum HQI in library

matching. To summarise the results of these

models and demonstrate specificity, a proximity

matrix is shown in Table 2 (page 2) which

demonstrates that when the test samples were

run against each of the three methods, each one

passed for its correct method. 

Qualification of potassium carbonate
and a hydrate
For materials that are chemically similar, a

correlation approach may not provide definitive

identification results, as similar spectra may have

HQI values that vary only slightly. It has been

shown that use of multivariate models and a 

p-value acceptance criteria can give much more

definitive and reliable analysis results5,6. 

The discrimination of potassium carbonate

(K2CO3) (IV) from potassium carbonate sesqui -

hydrate (K2CO3 H2O) (V), which differ only in 

the presence of a water molecule, is a good

example. Their Raman spectra are very similar,

MATERIAL IDENTIFICATION

European Pharmaceutical Review
www.europeanpharmaceuticalreview.com

4

Figure 5: Chemical structures of potassium carbonate
and potassium carbonate sesquihydrate

Figure 6: Raman spectra of potassium carbonate (red) and potassium carbonate sesquihydrate (blue)

Table 3: HQI values for samples measured in Investigation Mode on the NanoRam (B&W Tek), which utilizes
spectral library matching



dominated by the in-phase CO3 stretch vibration

at 1060 cm-1 as can be seen in Figure 6 (page 4).

The sesquihydrate has multiple bands for the

CO3 out of plane deformation near 700 cm-1, and

this is seen as a single peak at 688 cm-1 in 

the potassium carbonate. Because the HQI is

based on spectral correlations that are not

sensitive to subtle changes in data, these

materials have HQI values of > 96 for both of the

compounds, thus making use of HQI for

unambiguous identification difficult, as shown

in Table 3 (page 4).

To further analyse these compounds,

methods were developed for each on the

NanoRam (B&W Tek, Inc.). For each material, 

20 Raman spectra were collected using 

four samples of the material, and the method

builder automatically generated the PCA 

model based on spectral data upon completion

of the 20 scans, resulting in a model rank 

such that 90 per cent of the spectral variance 

is explained. 

Samples were then tested in identifica-

tion mode on the NanoRam (B&W Tek), 

which automatically projected the newly-

collected Raman spectrum onto the selected

PCA model (Method), and a pass/fail result

(based on a 95 per cent confidence) was

reported based on  the probability that 

a sample does match the method. When a 

‘fail’ result was obtained, the system auto-

matically performed a spectral library 

search and probable matches were returned

based on the HQI of the sample to materials 

that are in the system spectral library and

methods library.

After the methods were developed for each

compound, five samples of each where then

tested against both methods with the NanoRam

(B&W Tek, Inc.). The results shown in Table 4

definitively show that using the SIMCA method

of material classification, we were able to 

qualify the identity of both potassium carbonate

and its hydrate. 

Conclusion
Current handheld spectroscopic analysers 

use built-in processing algorithms to auto -

matically perform complex analysis, making

these tools much more accessible to the 

general user. However, not clearly under -

standing the advant ages and disadvantages 

of the various algorithms can lead to a 

misuse of the tech nology. Therefore, it is

important to understand that both correla-

tion and multi variate approaches to spectral

analysis have their advantages and dis -

advantages depending on the goal of the

measurement. HQI allows for the rapid

comparison of a spectrum against a large 

library of spectra, making it ideal for analysis 

of unknown materials, whereas p-value is 

ideal for verifying and/or qualifying the identity

of a ‘known’ material. Multivariate analysis

provides a much more robust meth odology and

has the added advantage of being able to

discriminate between molecules which have

structural similarities.
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Table 4: Summary of p-values for samples tested in Identification mode against given methods
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