The field of regenerative medicine – an area promising a revolution in 21st century healthcare – has been enabled by rapid scientific advancements in recent years. There is a growing need for a new generation of therapeutic products, made more severe by the global shortages of organs available for transplantations. However, before regenerative therapies can start playing a significant role in modern medicine, the industry must provide solutions to several key manufacturing challenges. Here, Maciej Nakoniecznik provides an overview of what the future holds for regenerative medicine.
THERE ARE currently approximately 6,000 people awaiting lifesaving organ transplantations on the UK Transplant waiting list. In 2018/19, over 400 people died in the UK due to organ shortages.1 This figure is likely to be significantly higher this year, as safety restrictions introduced due to the COVID-19 pandemic saw the number of transplants performed between April and June plummet by over 50 percent compared to the same period last year.2 In the US, a steep growth in the number of transplants has been observed since 2013, with the number of patients on the transplant waiting list falling steadily during that period.3 However, over 112,000 people remained on the waiting list in September 2019, with more than 7,000 deaths attributed to organ shortages every year across the country.4
Most of the possible legislative changes aiming to increase the donor pool – such as the introduction of “death by donation” – have been rejected due to ethical concerns. A number of countries, including Spain, Belgium and most recently the UK, have switched to a system of “presumed consent” in order to increase the number of usable organs from deceased donors.5,6 The full effects of this legislation remain to be seen, but it is unlikely that its impact alone will be enough to overcome current organ shortages. The severity of the situation indicates that innovative steps will have to be taken; a promising potential solution is the emerging field of regenerative medicine and tissue engineering.
Definition of regenerative medicine
Manufacturing of regenerative medicine cellular products needs to be scaled out rather than scaled up to meet clinical demand”
Regenerative medicine is a rapidly evolving field that holds great promise for healthcare. It utilises a combination of cells and biological or synthetic scaffolds that are implanted into the patient, aiming to “replace or regenerate human cells, tissue or organs, to restore or establish normal function”.7 The definition clearly highlights the difference between regenerative medicine and current treatment methods, which largely focus on treating the effects of a given medical condition, rather than removing its underlying causes. The difference is well illustrated by the example of the current type 1 diabetes treatment, where the activity of pancreatic β cells is mimicked by insulin therapy. This strategy does not provide a cure for the disease, but rather aims to minimise its impact on patient health and quality of life. A potential treatment strategy applying the principles and techniques of regenerative medicine would aim to restore the normal insulin-secreting function of the β cells by replacing the depleted cell population, thus offering a cure for the condition, rather than merely a treatment of its symptoms.
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
Brief history and significance of regenerative medicine
The second half of the 20th century saw the foundations of regenerative medicine laid, with the first murine in vitro stem cell line developed in 1981.8 Another breakthrough came in 1998 with the first successful creation of stem cell lines derived from human blastocysts.9 It was proven for the first time that human stem cells can retain their self-renewal capacity and differentiation potential after in vitro processing. This discovery paved the way for research into the therapeutic uses of human embryonic stem cells (ESCs). In 2007, induced pluripotent stem cells (iPSCs) were generated from differentiated adult fibroblasts.10 Human iPSCs maintain the properties responsible for the therapeutic potential of ESCs, but differ in two important respects. Firstly, their generation does not involve the destruction of human embryos, which removes the associated ethical objections; secondly, similarly to mesenchymal stem cell (MSCs) they can form a basis of autologous therapies, minimising the risk of immune rejection and acting in line with the philosophy of personalised medicine which is closely related to the field of regenerative medicine and tissue engineering.
Personalised medicine is a concept involving “tailoring the right therapeutic strategy for the right person at the right time” in place of the traditional “one-size-fits-all” approach.11 Personalised therapies are specifically adjusted for each patient using genomic and clinical data, increasing the effectiveness of the treatment and reducing the side effects compared to off-the-shelf drugs. Regenerative autologous cell therapies involving the uptake of cells from the patient’s body, in vitro modification and subsequent delivery back to the patient are likely to be the direction personalised medicine will take in the future. This approach has the potential to help solve many pressing problems of modern medicine, including the above-mentioned organ shortage; however, before it can make a wide-spread impact, a number of critical manufacturing challenges need to be addressed.
Key challenging areas
Quality control is challenging due to the complexity of the cells used in therapy compared to traditional drugs”
The challenges currently faced by the regenerative medicine manufacturing industry can be divided into three general categories: high manufacturing costs, production scale-up issues and regulatory hurdles. While some of these can be tackled by applying experience from pharmaceutical and biologics manufacturing, many are unique to this field and have not been encountered before.
In accordance with a key paradigm of personalised medicine – these therapeutic products are patient-specific and thus undergo a separate process in each instance – manufacturing of regenerative medicine cellular products needs to be scaled out rather than scaled up to meet clinical demand. The impact of economies of scale is therefore strongly reduced, resulting in elevated product prices. Process automation possibilities are currently limited, which leads to high reliance on human labour, further elevating the processing costs and increasing product variability. Transport logistics also remain a key cost-increasing factor, as cryopreservation, the current cell maintenance method of choice, may lead to significant product damage and requires specialist equipment for sustaining low temperatures during transport.12
Large-scale manufacturing of cell-based therapeutic products presents a unique challenge: the cells are the final product rather than a process impurity, unlike in the production of traditional biopharmaceuticals. For this reason, terminal sterilisation of the product cannot be performed; exogenous contamination must be avoided with other methods, such as reliance on closed systems and single-use technologies.13 Development of efficient upstream processing methods is also challenging. With autologous therapies, manufacturers should be able to run multiple processes in parallel within the same facility, which poses a high risk of cross-contamination. Development of novel processing platforms that combine the high throughput of other biotechnological industries with the precision and reliability of benchtop cell processing equipment is therefore key for further expansion of the field.
Assurance of regulatory compliance is another crucial issue for manufacturers of regenerative therapies. Due to the relative novelty of the field, the regulatory frameworks are still based on those established for conventional drugs; regulations and bodies specific to the industry are still under development, resulting in numerous regulatory grey areas. Quality control is challenging due to the complexity of the cells used in therapy compared to traditional drugs. Definition and control of the critical quality attributes of the final product originate from the process itself; this is known as the “quality by design” paradigm.14 Adherence is key in meeting both current and future regulations, but requires working on the advancement of manufacturing processes in parallel with new products, adding another layer of complexity to the early stages of product development, while increasing its cost.
Summary
The need for development of scaleable, robust manufacturing processes for regenerative medicine products is imperative, as highlighted by the current worldwide organ donor shortages and limited capabilities of traditional medicine to treat the underlying causes of critical health conditions. If the idea of personalised medicine is to become a clinical reality, cell processing techniques must move beyond human-operated laboratory-based technologies and meet the emerging regulatory requirements. The main challenges currently faced by the industry involve high costs, problems with scale-up and regulatory ambiguity.
About the author
Maciej Nakoniecznik has recently been awarded a BSc degree in Bioprocessing of New Medicines at University College London, receiving numerous academic awards and is about to enrol on the MSc in Manufacture and Commercialisation of Stem Cell and Gene Therapies at the same institution. He has worked on a range of projects involving bioprocess design, centrifugation modelling and genomic data analysis, gaining substantial research experience.
References
Organ donation and transplantation [Internet]. NHS Blood and Transplant. 2020 [cited 10 July 2020]. Available from: https://www.nhsbt.nhs.uk/what-we-do/transplantation-services/organdonation-and-transplantation/
Donation and Transplantation Monthly Activity Report [Internet]. NHS Blood and Transplant; 2020 [cited 11 July 2020]. Available from: https://nhsbtdbe.blob.core.windows.net/umbracoassets-corp/19022/monthly-stats.pdf
OPTN/SRTR 2018 Annual Data Report. American Journal of Transplantation. 2020;20(s1):1-568.
National Survey of Organ Donation Attitudes and Practices, 2019 [Internet]. Rockville, Maryland: U.S. Department of Health and Public Services, Health Resources and Services Administration, Healthcare Systems Bureau; 2020 [cited 11 July 2020]. Available from: https://www.organdonor.gov/sites/default/files/about-dot/files/nsodap-organ-donationsurvey-2019.pdf
A. Finding a solution to the organ shortage. Canadian Medical Association Journal. 2016;188(16):1182-1183.
Opt-out organ donation: Max and Keira’s Bill passed into law [Internet]. GOV.UK. 2019 [cited 11 July 2020]. Available from: https://www.gov.uk/government/news/opt-out-organ-donationmax-and-keira-s-bill-passed-into-law
Mason C, Dunnill P. A brief definition of regenerative medicine. Regenerative Medicine. 2008;3(1):1-5.
Evans M, Kaufman M. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-156.
Thomson J. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science. 1998;282(5391):1145-1147.
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131(5):861-872.
Official Journal of the European Union, C 421 [Internet]. European Commission; 2015 [cited 12 July 2020]. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:C:2015:421:FULL&from=EN
Cohen P, Hunsberger J, Atala A. Regenerative Medicine Manufacturing – Challenges and Opportunities. In: Atala A, Lanza R, Mikos A, Nerem R, ed. by. Principles of Regenerative Medicine. 3rd ed. Elsevier; 2019. p. 1367-1377.
Pattasseril J, Varadaraju H, Rowley J. Downstream Technology Landscape for Large-Scale Therapeutic Cell Processing. BioProcess International. 2013.
Martin I, Simmons P, Williams D. Manufacturing Challenges in Regenerative Medicine. Science Translational Medicine. 2014;6(232):232fs16-232fs16.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.