Researchers identify genes causing antimalarial drug resistance
1
SHARES
Posted: 21 April 2011 |
Researchers have identified several genes that may be implicated in the malaria parasite’s ability to rapidly evade drug treatments…
Using a pair of powerful genome-search techniques, researchers from the Harvard School of Public Health (HSPH), Harvard University, and the Broad Institute have identified several genes that may be implicated in the malaria parasite’s notorious ability to rapidly evade drug treatments. Further testing revealed that one of the genes, when inserted into drug-sensitive parasites, rendered them less vulnerable to three antimalarial drugs. The successful experiments suggest that the genomic methods are useful tools for probing the genetic mechanisms underlying drug resistance in the Plasmodium falciparum malaria parasite and potentially other types of disease-causing parasites as well. The studyOpens in New Window appeared online April 21, 2011, in PLoS Genetics, and is timed to coincide with World Malaria Day on April 25. “Identification of mutations associated with drug resistance helps us understand how the parasite evades the effects of the drug,” said Sarah Volkman, senior research scientist at HSPH and a co-senior author of the paper. “Once we understand the processes used by the parasite to avoid the effects of the antimalarial treatment, scientists can develop new drugs that circumvent the strategies employed by the drug-resistant malaria parasite.” In addition, said Volkman, knowing the mutations that signal that a parasite has become resistant to an antimalarial compound allows researchers to develop tools that can be used for monitoring and surveillance of drug-resistant parasites. Reducing the toll of malaria, which kills nearly a million people a year–mainly young children in sub-Sahara Africa–is a major challenge because of the parasite’s talent for swiftly developing resistance to multiple drugs. To counter the shape-shifting parasite’s defenses, scientists say they must improve on their meager understanding of the molecular and genetic mechanisms of resistance. Genetically diverse populations of the blood-borne malaria parasite are endemic in Africa, Asia, and South America. When exposed to antimalarial drugs and the human immune system, Plasmodium falciparum has a remarkable ability to quickly generate resistant clones of parasites, a major obstacle to successful treatment. For the study, the scientists, including Volkman, Dyann Wirth, and co-first author Daria Van Tyne of HSPH and the Broad, co-first author Danny Park and Pardis Sabeti of the Broad and Harvard University, and Daniel Neafsey and Stephen Schaffner of the Broad, analyzed the DNA of 57 parasites from the three continents, using a high-density genome-wide array that examines more than 17,000 mutations. They also measured the parasites’ responses to 13 antimalarial drugs. The scientists examined diversity of the parasite to identify 20 rapidly evolving loci in the genome, and then carried out a genome-wide association study (GWAS) to identify genetic variants that correlated with or are associated with the drug-resistance trait. These genetic variants are necessarily enriched in the drug-resistant, but not drug-sensitive parasites, allowing the researchers to home in on the candidate genes that are involved in modulating drug responses. That search netted 11 genes implicated in drug resistance – one previously known and others discovered for the first time. Van Tyne pursued one of the novel genes, PF10_0355, for follow-up functional testing. She used an experimental technique that introduced extra copies of the gene from a resistant parasite into a drug-sensitive one, and found that the formerly sensitive parasite was now rendered more resistant to three standard antimalarial agents. “This demonstration suggests that the gene is involved in modifying parasite drug response,” said Van Tyne, a graduate student in the laboratory of Wirth, chair of the Department of Immunology and Infectious Diseases at HSPH and a co-director of the Infectious Disease Initiative at the Broad. “We feel that this is one gene of potentially many that affect drug-resistance mechanisms. We’re now working to follow up and understand how these and the other genes identified work.” Drug resistance is a major concern that threatens to undermine global efforts to control or eradicate malaria. Understanding how the parasite is changing before clinical drug resistance is apparent offers some hope that we might be able to extend the useful life of available drugs and identify new effective antimalarials, said Volkman. The study was funded by the Bill and Melinda Gates Foundation, the Ellison Medical Foundation, the ExxonMobil Foundation, the Fogarty International Center at the NIH and the National Institute of Allergy and Infectious Diseases. “Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium Falciparum,” Daria Van Tyne, Daniel J. Park, Stephen F. Schaffner, Daniel E. Neafsey, Elaine Angelino, Joseph F. Cortese, Kayla G. Barnes, David M. Rosen, Amanda K. Lukens, Rachel F. Daniels, Danny A. Milner, Jr., Charles A. Johnson, Ilya Shlyakhter, Sharon R. Grossman, Justin S. Becker, Daniel Yamins, Elinor K. Karlsson, Daouda Ndiaye, Ousmane Sarr, Souleymane Mboup, Christian Happi, Nicholas A. Furlotte, Eleazar Eskin, Hyun Min Kang, Daniel L. Hartl, Bruce W. Birren, Roger C. Wiegand, Eric S. Lander, Dyann F. Wirth, Sarah K. Volkman, Pardis C. Sabeti, PLoS Genetics, online April 21, 2011
This webinar showcases the Growth Direct System; an RMM (Rapid Microbial Method) that improves on traditional membrane filtration, delivering increased accuracy, a faster time to result, enhanced data integrity compliance, and more control over the manufacturing process.
Key learning points:
Understand the benefits of full workflow microbiology quality control testing automation in radiopharmaceutical production
Learn about ITM’s implementation journey and considerations when evaluating the technology
Find out how the advanced optics and microcolony detection capabilities of Growth Direct® technology impact time to result (TTR).
Don’t miss your chance to learn from experts in the industry –Register for FREE
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.