• Facebook
  • Twitter
  • LinkedIn
  • Google +
  • RSS

University of Greenwich - Articles and news items

Figure 3: The global TSC spectrum of caffeine Form I

Applications of thermally stimulated current spectroscopy in pharmaceutical research

Issue 3 2012, Thermal Processing / 10 July 2012 / Milan Antonijević, School of Science, University of Greenwich

Thermally Stimulated Current Spectroscopy (TSC) is a new tool that can be used to analyse pharmaceutically important molecules. TSC studies are usually conducted to provide additional information about molecular mobility in the solid state, and as a result characterise phase transitions that are related to thermal transitions in the crystalline (polymorphic) and amorphous phases. The ability of TSC to probe molecular mobilities, previously undetected in materials, and link them to the stability of different phases has sparked immense scientific interest in this technique.

In the last 10 years, the pharmaceutical market has seen a significant decrease in approved new drug entities. Although many factors may be responsible for this trend, one of them is insufficient information / characterisation of a lead molecule. Consequently, new techniques are often applied in the pharmaceutical field with the simple goal to aid better selection of the drug candidate and dosage form.

Improving the performance of existing drug products is another goal that often requires comprehensive information about the properties of the drug molecules. In recent years, the physical sciences have made great progress towards understanding the properties of pharmaceutically important amorphous and polymorphic materials. The major focus of this work is to utilise the advantages that they may bring to formulated products (e.g. faster solubility of amorphous drugs compared to crystalline counterparts) and at the same time to overcome stability problems (e.g. tendency to recrystallise on storage) that they may demonstrate.

Raman spectroscopy in pharmaceutical analysis

Issue 5 2009, Past issues / 9 October 2009 /

A wide and versatile range of analytical techniques are routinely used, indeed are necessary, in pharmaceutical analysis. Over the past decade Raman spectroscopy has increasingly come to the fore as a valuable member of the arsenal of methods used, from both a fundamental and applied perspective, for the interrogation of solid, liquid and solution phase samples. Advances have occurred not only in instrumentation but also in fundamental techniques and applications. The method holds substantial potential for the investigation of, what are normally considered, problematic or challenging areas of analysis. The aforementioned areas include – but are, definitely not limited too reaction kinetics, pharmaceutical drug discovery, detection of counterfeit/adulterated/illegal drugs, trace analysis and uses for on-line pharmaceutical process manufacturing. This, the first of several articles on the use of Raman spectroscopic techniques in pharmaceutical analysis, provides an introductory overview of the theory of the technique.

 

Webinar: Different thermal analysis techniques to measure the glass transitionWATCH NOW
+ +