• Facebook
  • Twitter
  • LinkedIn
  • Google +
  • RSS

University of Heidelberg - Articles and news items

16_Figure 2

Targeted therapy in metastatic melanoma

Cancer Biology, Issue 1 2012 / 28 February 2012 / Janina Staub and Jochen Utikal, Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, University of Heidelberg & Skin Cancer Unit, German Cancer Research Center

During the last few years, significant improvements in the treatment of metastatic melanoma were reported, targeting molecules involved in the pathogenesis of melanoma. Different clinical trials were able to prove a prolonged overall survival by introducing new therapeutic agents. Hereby an imunomodulating therapy with the anti-CTLA-4 antibody ipilimumab has been established. Other promising treatment possibilities include targeted therapies for melanoma patients showing certain activating mutations in their tumour cells, e.g. BRAF V600 mutations and their selective inhibition by vemurafenib or the inhibition of the c-Kit receptor by drugs such as imatinib mesylate. This review will provide a brief overview of the latest therapeutic strategies and recent achievements in treating metastatic melanoma, as well as discuss the arising problems with resistance mechanisms to selective therapies. It will also highlight future approaches to combine specific treatments in an attempt to individualise melanoma treatment for every patient with the best possible efficacy and outcome…

Jadenu

Expression profiling of circulating miRNAs as a novel non-invasive diagnostic tool

Genomics, Issue 6 2011 / 13 December 2011 / Mirco Castoldi. Department of Pediatric Hematology, Oncology and Immunology University of Heidelberg

Cell-free nucleic acids circulating in human blood were first described in 19481. However, it was not until the work of Sorengon and colleagues was published in 19942 that the importance of circulating nucleic acid (cfNA) was recognised. Today, the detection of diverse type of cfNA3 in blood and other body fluids is a valuable resource for the identification of a novel biomarker4,5. Although different types of cfNA have been described (including DNA, mRNA and microRNA), this review focuses on the isolation, detection and clinical utility of circulating microRNAs.

microRNAs (miRNAs) are an abundant class of short single stranded non-coding RNAs (~22 nts) that regulate gene expression at the posttranscriptional level. Interaction between an miRNA and any given of its mRNA targets results in either translation inhibition, mRNA degradation or a combination of both mechanisms. Therefore, miRNAs activity effectively reduces the transcriptional output of a target gene, without affecting its transcription rate. Currently, the sequence of over 60,000 microRNAs are deposited in the miRBase database [Version 17, April 20116]. miRNA activity has been associated with the control of a wide range of basic processes such as development, differentiation and metabolism. Detection of differential expression of miRNAs in many cases have established the basis for miRNA functional analysis and specific miRNA expression patterns can provide valuable diagnostic and prognostic indications, for example, in the context of human malignancies7,8. Moreover, the deregulation of the expression of miRNAs has been shown to contribute to cancer development through various kinds of mechanisms, including deletions, amplification or mutations involving miRNA loci, epigenetic silencing, as well as the dysregulation of transcription factors that target specific miRNAs9,10.

High throughput and high content screening microscopy: A microscopy based guideline

Issue 4 2009, Past issues / 30 July 2009 /

The understanding of properties of any biological system requires a detailed and quantitative analysis of its parts and their interactions. As different processes within a system occur at defined space and time, each process holds its own optimal observation and investigation technique. One of the most powerful tools to analyse biological samples quantitatively is based on fluorescence microscopy. Comprehensive studies of diverse biological processes were lately performed by fluorescence screening microscopy, which came up extensively during the last decade1,2,3.

Utilisation of secondary screening

Issue 3 2008, Past issues / 19 June 2008 /

European Pharmaceutical Review has brought together four individuals from different sides of the scientific palette to discuss current and future issues surrounding secondary screening and maximising its potential.

MicroRNAs for high-throughput functional analysis

Issue 3 2008, Past issues / 19 June 2008 /

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, which are potent post-transcriptional gene expression regulators. They have been shown to participate in the regulation of numerous cellular processes, the list of which is still growing. miRNAs affect numerous targets that can be determined by direct experiments or predicted by bioinformatics approaches, and are presented in several online databases. Feasibility of miRNA for high-throughput experimentation is becoming possible due to the availability of commercially produced molecules, which are able to alter the levels of endogenous miRNAs. miRNA functional analysis will help to validate predicted targets and reveal the role of these small molecules in biological pathways. miRNAs have a high potential to be used as a new gene expression regulating reagent for microscopy based assays.

Analysis of microRNA expression by qPCR

Issue 6 2007, Past issues / 23 November 2007 /

Alteration of microRNA (miRNA) expression in a disease compared to a healthy state and/or correlation of miRNA expression with clinical parameters (like disease progression or therapy response), may indicate that miRNAs can serve as clinically relevant biomarkers1-3. An important first step for further functional characterisation is the information about differential miRNA expression in cellular processes such as; differentiation4,5, proliferation or apoptosis,6 that may determine which disease causing genes are specifically regulated by miRNAs, or vice versa; which genes regulate miRNA expression.

 

Webinar: Different thermal analysis techniques to measure the glass transitionWATCH NOW
+ +