• Facebook
  • Twitter
  • LinkedIn
  • Google +
  • RSS
  • Email newsletter

Controlled nucleation in freeze-drying

Publication date: 22 October 2012
Author(s): Henning Gieseler, Associate Professor at the Division of Pharmaceutics, University of Erlangen & CEO, GILYOS GmbH and Peter Stärtzel, Pharmaceutical Scientist, GILYOS GmbH

The stochastic nature of nucleation during the freezing step of the freeze-drying process has been regarded as a demerit in a process which is considered under rigorous control. The freezing performance of a product can impact its subsequent drying behaviour and the final product quality attributes. Hence, the idea to control this stochastic event and thus to directly influence the product morphology seems highly appealing. Sound understanding of the nature of nucleation and its link to drying performance, as well as the choice of a suitable technical concept, is of fundamental importance and the prerequisite to profit from the opportunities offered by controlled nucleation.

Freeze-drying is a commonly used method within the pharmaceutical industry. One of the key steps of the entire process is the initial freezing procedure. During freezing of an aqueous solution, the formation of ice does not start at the equilibrium freezing temperature, Tf (Figure 1). Instead, the solution shows supercooling below Tf until the first ice nuclei are formed at the nucleation temperature, Tn. Nucleation itself proceeds in a three-phase process. ‘Primary nucleation’ describes the point where initial crystal nuclei appear from molecular clusters exceeding a critical size1,2. The formed nuclei are further grown to ice crystals by secondary nucleation (also referred to as ‘crystallisation’) passing through the already nucleated volume1.

The rest of this content is restricted to logged-in subscribers. Login or register (it's free!) to view the full content.

Leave a reply