• Facebook
  • Twitter
  • LinkedIn
  • Google +
  • RSS

Current activities of the USP general chapters

24 August 2016  •  Author(s): Radhakrishna Tirumalai, PhD, United States Pharmacopeial Convention

From a microbiological perspective, pharmaceutical products fall into two categories – nonsterile and sterile. For both categories manufacturers must eliminate, or minimise, potential health risks to patients related to microorganisms and the toxins they produce, whilst maintaining product quality. Many contributing factors may affect the quality of a medicine or its ingredients, but microbial bioburden control and proper sterilisation methods are critical considerations for the manufacturer throughout the product’s lifecycle. This article outlines the scope and function of the United States Pharmacopeial Convention (USP) as well as the ongoing work of the Microbiology Expert Committee (Microbiology EC).

shutterstock_71453401

The USP is a global public health organisation that develops standards for the identity, strength, quality and purity of medicines, foods and dietary supplements and their ingredients. USP standards for medicines and their ingredients are published in the United States Pharmacopeia—National Formulary (USP–NF). USP has no role in enforcement of these or other provisions that recognise USP–NF standards; this is the responsibility of the US Food and Drug Administration (FDA) and other government authorities in the US and elsewhere.

USP-NF standards are published in the form of monographs, general chapters and General Notices. Monographs are developed for specific articles (for example drug substance, drug product, excipient, etc.) and general chapters can be applied across multiple articles. The identity, strength, quality and purity of an article are determined by the official tests, procedures, and acceptance criteria and other requirements incorporated in a USP monograph, in applicable general chapters, or in the General Notices. ‘Applicable general chapters’ refers to the general chapters numbered below 1,000 in USP–NF that are made applicable to an article through reference in General Notices, a monograph, or another applicable general chapter numbered below 1,000.

General chapters numbered above <1,000> in USP–NF are typically informational. They do not contain mandatory tests, assays, or other requirements applicable to any official article, regardless of citation in a general chapter numbered below 1,000, a monograph, or General Notices. The FDA may also require manufacturers to conform to USP standards that may not otherwise apply by the terms of USP–NF, if determined by the Agency to be within the scope of current good manufacturing practices (cGMPs). USP’s standards are recognised and used all around the world.

Through its Microbiology Expert Committee (Microbiology EC), USP develops and revises general chapters related to pharmaceutical microbiology. The Microbiology EC has established a comprehensive work plan for its five-year operating cycle. The work plan is intended to help meet USP’s standards-setting goals. Major initiatives in the current USP 2015–2020 cycle regarding microbiological contamination control include sterilisation processes, depyrogenation processes and sterility assurance. These key activities and the related modern microbiological methods are discussed as follows.

Sterility assurance and sterilisation

While all products purported to be sterile have to meet the requirements of General Chapter <71> Sterility Tests, sterility assurance can only be achieved by the use of robust sterilisation processes. USP’s current General Chapter <1211> Sterilization and Sterility Assurance of Compendial Articles addresses principles of sterility assurance and provides information on various sterilisation processes. In response to stakeholder feedback that greater detail is needed to address specific sterilisation methods, USP initiated a significant rewrite of the general chapter. The initial focus of this phase is on sterilisation, to be followed by sterility assurance. In determining how to update the sterilisation material in the general chapter (which was first published in the late 1980s), the Microbiology EC decided to split the content of the general chapter into two major parts – sterility assurance and sterilisation processes. Information related to the latter was removed from the existing General Chapter <1211> and developed separately as the <1229.x> series1.

The new series of general chapters (the ‘<1229.x> series’) is dedicated to individual sterilisation processes, with an overarching general chapter (<1229>) covering the overall concept of sterilisation.

To date, the Microbiology EC has developed sixteen general chapters, which provide valuable information and guidance on distinct methods of sterilisation and related topics. These are:

  • <1229> Sterilization of Compendial Articles
  • <1229.1> Steam Sterilization by Direct Contact
  • <1229.2> Moist Heat Sterilization of Aqueous Liquids
  • <1229.3> Monitoring of Bioburden
  • <1229.4> Sterilizing Filtration of Liquids
  • <1229.5> Biological Indicators for Sterilization
  • <1229.6> Liquid Phase Sterilization
  • <1229.7> Gaseous Sterilization <1229
  • <1229.8> Dry Heat Sterilization
  • <1229.9> Physicochemical Integrators and Indicators for Sterilization
  • <1229.10> Radiation Sterilization
  • <1229.11> Vapor Phase Sterilization
  • <1229.12> New Sterilization Methods
  • <1229.13> Sterilization-in-Place
  • <1229.14> Sterilization cycle development
  • <1229.15> Sterilizing Filtration of Gases. 

Currently, fourteen of these chapters (the first fourteen in the aforementioned list) have already been approved for inclusion in USP–NF2. The other general chapters will be proposed for public comment in 2016 in the Pharmacopeial Forum3, USP’s free, online tool for public comment on USP’s standards. Some of the new official and proposed general chapters of the <1229.x> series are detailed below.

The rest of this content is restricted to logged-in subscribers. Login or register (it's free!) to view the full content.

Leave a reply

 

Webinar: Different thermal analysis techniques to measure the glass transitionWATCH NOW
+ +