The coronavirus pandemic encouraged biopharmaceutical companies to adopt smarter approaches to vaccine development. Here, Vishnu Kumar and Soundar Kumara from Pennsylvania State University, and Vijay Srinivasan from National Institute of Standards and Technology (NIST), explore the emergence of platform-based vaccine technologies and their potential expansion to treat other life-threatening diseases.
THE GLOBAL outbreak of the COVID-19 pandemic triggered an urgent need to protect people’s lives and livelihoods and the healthcare community recognised quite early that vaccines were the best solution to this crisis. However, the biopharma industries realised that traditional vaccine development and manufacturing techniques, which take around five to 10 years for initial development to large-scale distribution,1 were inadequate to meet the growing demand for COVID-19 vaccines. This motivated the biopharma sector to devise smart approaches to develop and manufacture vaccines without compromising on their safety and efficacy.2
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
Can’t attend live? No worries – register to receive the recording post-event.
Novel biotechnology platforms for vaccine development
Vaccines based on the two novel biotechnology platform-based techniques mRNA (messenger RNA) and viral vector, have proven successful in controlling the spread of the COVID-19 pandemic. It is worthwhile noting that these platform-based vaccines do not involve the injection of pathogens into the human body, as with traditional vaccines, but instead integrate the genetic sequence information of the disease-causing pathogens.2 Owing to their inherent characteristics of being robust and flexible, the platform-based smart vaccine development technique has gained much popularity among biopharma companies. According to the latest estimates from the World Health Organization (WHO), there are more than 80 biotechnology platform-based COVID-19 vaccine candidates in various stages of clinical development.3
Figure 1: Two different modules (RNA sequences) are combined with the same base platform carrier (lipid nanoparticle) to form two different mRNA platform-based vaccines.
The vaccines developed using the platform technology share a set of components or parts that is common across all the vaccine products derived from that particular platform.4 For instance, vaccines derived from the mRNA platform have a ‘base platform carrier’, usually lipid nanoparticles, that is common across all mRNA vaccine products. When individual components known as ‘modules’ are plugged into this base platform carrier, a distinct vaccine product belonging to the mRNA vaccine platform family is derived.2 The modules are usually mRNA strands, which are tailor-made based on the target disease. The base platform carrier (lipid nanoparticles) envelops the module components (mRNA strands) to generate the required vaccine. As illustrated in Figure 1, when a module component (RNA 1) is embedded to a base platform carrier (lipid nanoparticle), a vaccine product (Vaccine 1) belonging to the mRNA platform is developed. It is interesting to note that by simply swapping the module component to RNA 2, a different vaccine product (Vaccine 2) belonging to the mRNA platform can be generated.
Similarly, in viral vector platform-based vaccines, a modified version of a harmless virus (called a ‘vector’) acts as the base platform carrier and envelops the DNA strands (module). By swapping the DNA strand embedded on the same vector (base platform carrier), a different vaccine can be generated, as illustrated in Figure 2.
Figure 2: Two different DNA sequences (modules) combined with the same base platform carrier (viral vector) to form two different viral vector vaccine products.
This unique capability of platform-based vaccines makes them highly customisable. Researchers opine that once the genetic sequence of the virus is generated, it can be digitally shared across the globe to accelerate vaccine development. By swapping the genetic instructions (module) of a vaccine to match the new virus (or its variant), and embedding it in the base platform carrier, a new vaccine candidate can be easily developed to tackle the new virus (or its variant). This makes the platform-based vaccines customisable, quick to build and smart.
Digital technologies for smart vaccine manufacturing
Smart manufacturing essentially involves the digitalisation of the manufacturing enterprise, with enhanced connectivity and seamless data and information exchange through closely inter-connected devices and systems.5 The smart manufacturing paradigm can essentially transform the enterprise by improving productivity and customer experience, as well as revolutionising values chains.6 Digital technologies such as Internet of Things (IoT), autonomous robots, augmented reality, cloud computing, etc, lead the current era of digitalisation and facilitate ubiquitous data and information exchange between machines, humans and even enterprises.
In the context of vaccines, smart manufacturing refers to the adoption of smart devices (such as sensors, radio frequency identification [RFID] devices, etc) to generate, process, store and exchange data, and services (including digital tools and applications) to connect these devices during each step of the vaccine manufacturing process. Data collected during each stage, such as temperature, composition, etc, of the vaccine products by the smart devices can be monitored and analysed using cloud-based applications. This can drive informed decisions and strategies to enhance the safety, quality and efficiency of the manufacturing process.
Figure 3: Enabling technologies for making future factories ‘smart’.
Moreover, digital automation tools will be deployed at large scale to complement the efforts to make the vaccine manufacturing process smart. Owing to the safety concerns presented by human-induced contamination and mishandling with vaccine production, interest in adopting autonomous and intelligent devices has grown tremendously in recent times and can be expected to dominate the industry in the future. The recent advancements in augmented reality (AR) technology have created new opportunities for digitally interacting with devices, products and humans using gestures, thereby limiting the need for physical interactions. For example, AR devices can be used to develop touchless applications whereby the human operator can interact with a vaccine product using gestures to obtain its properties.6
Finally, blockchain and similar digital record‑keeping technologies will be adopted to boost the visibility and transparency of the vaccine manufacturing process and supply chain, control counterfeits, and enhance trust among people. This lays the foundation for the development of future smart factories aimed at vaccine manufacturing, as illustrated in Figure 3.
The future of platform-based vaccine technology and manufacturing
The biopharma sector has witnessed significant transformations in recent times. The main driver for this change has been novel platform-based vaccine technologies and smart vaccine manufacturing techniques. The benefit of vaccines based on platform technologies is that they can be easily designed and developed. By embracing digital tools and transformative technologies, the biopharma industries will be well positioned to address the global need for safe and effective vaccines.
Moving forward, biopharma companies are exploring the possible extension of the platform‑based vaccine technology to tackle diseases beyond COVID-19, such as influenza, cancer and AIDS (Acquired Immune Deficiency Syndrome), among others. If this becomes a reality, then it will be possible for us to develop customisable and personalised vaccines to tackle these life‑threatening diseases in the near future.
Disclaimer
Certain commercial systems, products and applications identified in this paper are not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, USA, nor is it intended to imply that they are necessarily the best available for the purpose.
About the authors
Vishnu Kumar is a Doctoral Candidate in Industrial Engineering and a member of the Laboratory for Intelligent Systems and Analytics (LISA) at the Pennsylvania State University, USA. His research interests are in the product design, manufacturing and supply chain domains.
Dr Soundar Kumara is Allen E. Pearce and Allen M. Pearce Professor of Industrial Engineering and the Director of the Center for Applications of AI & ML to Industry (AIMI) at the Pennsylvania State University, USA. His research interests are in data science, graph analytics and AI and ML, with applications in manufacturing and healthcare.
Dr Vijay Srinivasan is currently with the Engineering Laboratory at the National Institute of Standards and Technology, USA. Previously, he was the Chief Standards and Solutions Officer for Product Lifecycle Management (PLM) at IBM. He has also served as an adjunct professor of Mechanical Engineering at Columbia University, USA.
References
Kumar V, Srinivasan V, Kumara S. 2021. Towards Smart Vaccine Manufacturing: A Preliminary Study During Covid-19. Proceedings of the ASME International Mechanical Engineering Congress and Exposition. https://doi.org/10.1115/IMECE2021-70516.
Kumar V, Srinivasan V, Kumara S. 2022. Smart Vaccine Manufacturing Using Novel Biotechnology Platforms: A Study During COVID-19. Journal of Computing and Information Science in Engineering. 22(4):040903. https://doi.org/10.1115/1.4053273.
Lu Y, Morris K, Frechette S. Current Standards Landscape for Smart Manufacturing Systems. NIST Interagency/Internal Report (NISTIR). 2016. https://doi.org/10.6028/NIST.IR.8107.
Chircu AM, Sultanow E, Sözer LD. A reference architecture for digitalization in the pharmaceutical industry. INFORMATIK. 2017. https://dx.doi.org/10.18420/in2017_205.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.