Marc Baiget Francesch explains how commensal bacteria can be opportunistic pathogens and why treating them as merely a light threat to cleanrooms can bring disastrous consequences.
CLASSIFYING bacteria has always been a key issue in microbiology. Different criteria, such as morphology, spore formation or oxygen tolerance, have been used in order to build different classifications for various purposes. One of the most pragmatic ways to classify bacteria – or microorganisms in general – is through its interaction with humans. Following this criterion, many bacteria are well-established human pathogens. Others, which wait for the right time to infect, have been regarded as opportunistic pathogens. Another type of bacteria, generally found in the human microbiome, has been classified as human commensals; they use the human body as their ecosystem but, unlike the aforementioned types, cause no harm to the host.
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
Can’t attend live? No worries – register to receive the recording post-event.
As bacteria are present almost everywhere, they are a threat that is hard to avoid”
Pharmaceutical manufacturers would probably all agree on one thing: no matter which kind they are, bacteria are something we do not like to see in a cleanroom. Why so? The presence of bacteria in pharmaceutical manufacturing sites is always indicative of what might eventually contaminate medical products and hospital fluids, and hence is considered a red flag. Nevertheless, as bacteria are present almost everywhere, they are a threat that is hard to avoid. In order to prioritise, the main focus has been on pathogenic bacteria, which hitherto has allowed commensal bacteria to keep a low profile. However, underestimating their presence in the cleanroom can lead to disastrous events.
Leading genera
The hegemony of cleanroom contamination cases is mainly disputed between three genera: Micrococci, Staphylococci and Bacilli. The particular species Micrococcus luteus is responsible for approximately one out of four contamination cases in cleanrooms, while Staphylococcus epidermidis ranks the first of its genera. Nonetheless, the latter is not as common in comparison, as only one out of 25 isolates happen to be identified as S. epidermidis.1
M. luteus was first discovered by Alexander Fleming – the same scientist who later discovered the antibiotic use of Penicillium notatum – and it has been studied ever since. M. luteus is a saprotrophic microorganism typically found both in the soil and in human skin. It is an obligate aerobe (cannot survive in anoxic conditions) and is sensitive to the use of the antibiotic bacitracin, which differentiates it from its contamination partners Staphylococci.2 In other words, it is a typical human commensal and does not usually present antibiotic resistance.
S. epidermidis, on the other hand, was first described by the microbiologist Friederich Julius Rosenbach and, like M. luteus, is a typical microorganism of the human skin flora. However, S. epidermidis is a facultative anaerobe (can survive in anoxic conditions) and, due to its resistance to bacitracin, vancomycin is the regular choice against it.3
Both bacteria share an essential trait: neither have evolved to cause disease but live as human commensals. This is a differential trait from less frequent cleanroom contaminants like Burkholderia cepacia or Pseudomonas aeruginosa, two opportunistic pathogens that have developed several antibiotic resistances.4,5 However, both M. luteus and S. epidermidis have shown potential to develop infection in their hosts, as reported in various medical cases.6,7 Therefore, despite their differences, these four microorganisms have all been recognised as nosocomial pathogens, since they can all be found in hospital environments.
For bacteria like S. epidermidis and M. luteus, which form part of the regular human skin flora, its pathogenicity might appear more surprising than in the case of B. cepacia and P. aeruginosa, which are typically found in other environments like water and soil. However, the difference ultimately depends on place and time. M. luteus and S. epidermidis have a probiotic effect in the skin by avoiding Staphylococcus aureus in order to colonise it,8 but are harmful to humans if found in other locations like the bloodstream or endocardium (the innermost layer or the heart).9,10
B. cepacia, P. aeruginosa, S. epidermidis and M. luteus all share another important feature: the ability to form a biofilm.11,12 Bacteria that form biofilms are always a nasty gang. Firstly, biofilms diminish the efficiency of antibiotics by acting as a low permeability barrier to the core cells, so the antibiotic never reaches them. Therefore, once bacteria form a biofilm, they can compensate for their natural weakness to some antibiotics. In addition, biofilm bacteria are proficient at attaching to prosthetic implants.13 This has severe implications; by contaminating pharmaceutical products like prosthesis, these bacteria have an easy gateway to immunocompromised individuals. Both endocarditis and bacteraemia usually derive from surgical and implantation procedures where those bacteria use the infected medical material to enter the organism, thus acting like opportunistic pathogens. This is the problem: commensal bacteria have the potential to evolve to parasites if circumstances favour it.
In conclusion, no cleanroom bacterial contaminants should be overlooked. Bacteria that have frequently been considered harmless to humans have demonstrated their ability to infect immunocompromised hosts by colonising pharmaceutical material. In addition, if these bacteria are biofilm producers the alarms should sound even louder. In times like these, where healthcare systems risk collapse due to the SARS-CoV-2 pandemia, keeping all the potential pathogens away from hospitals is a must. Thus, companies have a duty to ensure their pharmaceutical manufacturing sites do not contribute to complicating matters further.
About the author
Marc Baiget Francesch has an MSc in Pharmaceutical Engineering and works as a Project Manager and Freelance Grant Writer at Alien Technology Transfer.
References
Sandle TA. Review of Cleanroom Microflora: Types, Trends, and Patterns. PDA Journal of Pharmaceutical Science and Technology. 2011; 65(4), 392-403. doi:10.5731/pdajpst.2011.00765
Baker JS, Hackett MF, Simard DJ. Variations in bacitracin susceptibility observed in Staphylococcus and Micrococcus species. J Clin Microbiol. 1986; 23(5), 963-964.
Otto M. Staphylococcus epidermidis — the accidental pathogen. Nature Reviews Microbiology. 2009; 7(8), 555-567. doi:10.1038/nrmicro2182
Tseng S, Tsai W, Liang C, Lin Y, Huang J, Chang C, Lu P. The Contribution of Antibiotic Resistance Mechanisms in Clinical Burkholderia cepacia Complex Isolates: An Emphasis on Efflux Pump Activity. PLoS ONE. 2014; 9(8). doi:10.1371/journal.pone.0104986
Usó J, Gil M, Gomilab B, Tiradob MD. Endocarditis por Micrococcus luteus. Enfermedades Infecciosas Y Microbiología Clínica. 2003; 21(2), 117. doi:10.1016/s0213-005x(03)72895-x
Eiff CV, Kuhn N, Herrmann M, Weber S, Peters G. Micrococcus Luteus As A Cause Of Recurrent Bacteremia. The Pediatric Infectious Disease Journal. 1996; 15(8), 711-713. doi:10.1097/00006454-199608000-00019
Duguid IG, Evans E, Brown MR, Gilbert P. (1992). Growth-rate-independent killing by ciprofloxacin of biofilm-derived Staphylococcus epidermidis evidence for cell-cycle dependency. Journal of Antimicrobial Chemotherapy. 1992; 30(6), 791-802. doi:10.1093/jac/30.6.791
Apac G, Coralith, Valdespino P, Juan, Carlos. Bacteremia por Staphylococcus epidermidis y abceso de partes blandas en un paciente post-operado: Reporte de un caso. 2013, October. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci…
Albertson D. Septic shock with Micrococcus luteus. Archives of Internal Medicine. 1978; 138(3), 487-488. doi:10.1001/archinte.138.3.487
El-Masry M. Bacterial populations in the biofilm and non-biofilm components of a sand filter used in water treatment. FEMS Microbiology Letters. 1995; 131(3), 263-269. doi:10.1016/0378-1097(95)00266-8
O’Gara J, Humphreys H. Staphylococcus epidermidis biofilms: importance and implications. Journal of Medical Microbiology. 2001;50(7):582-587.
Elgharably H, Hussain ST, Shrestha NK, Blackstone EH, Pettersson GB. Current Hypotheses in Cardiac Surgery: Biofilm in Infective Endocarditis. Seminars in Thoracic and Cardiovascular Surgery. 2016; 28(1), 56-59. doi:10.1053/j.semtcvs.2015.12.005
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.