Rapid progress in digital health technologies is enriching clinical trial design, improving clinical trial recruitment strategies and harnessing the power of clinical trial data to improve outcomes for patients and guide future research. Here, Natalie Fishburn, Cristina Duran and Serban Ghiorghiu, from R&D at AstraZeneca, discuss the evolving nature of clinical innovation in the age of precision medicine and how digital solutions are being used to enhance the experience for those involved in clinical trials.
The ambition is to use technological and digital solutions to reduce the burden for patients and trialists, so that clinical trial participation ultimately becomes part of daily practice”
In a typical year, AstraZeneca conducts over 240 global clinical trials, involving more than 123,000 patients in around 60 countries. For clinical innovation to deliver life-changing and potentially curative new medicines to patients as quickly and safely as possible, diverse digital and other technologies are increasingly being used to optimise clinical trials to get more medicines to more patients, faster than ever before. The move towards precision medicine is necessitating changes to the design and execution of clinical trials. The upsurge in digital healthcare during the COVID-19 pandemic has catalysed changes in clinical trial recruitment and participation. The ambition is to use technological and digital solutions to reduce the burden for patients and trialists, so that clinical trial participation ultimately becomes part of daily practice.
Designing clinical trials with patients in mind
Incorporating the patient voice into the initial planning process of our trials ensures that our designs are manageable and understandable, as well as feasible and practical.
Much can be learned from previous clinical research. Through Merlin, an internal AstraZeneca artificial intelligence (AI) and predictive analysis tool, some of our study teams are aiming to optimise the design and cost of new trials based on experience from previous study designs, including reducing patient and investigator burden and carbon emissions. The data leveraged by Merlin can help to increase patient recruitment and create diverse patient cohorts that are more representative of the patients typically seen in clinical practice.
Are you looking to explore how lipid formulations in softgels can enhance drug absorption and bioavailability. Register for our upcoming webinar to find out!
3 September 2025 | 3:00 PM BST | FREE Webinar
This webinar will delve into the different types of lipid formulations, such as solutions, suspensions, emulsions, and self-(micro)emulsifying systems. Applications span diverse therapeutic areas including HIV therapy, oncology, immunosuppressants, and emerging treatments like medicinal cannabis (eg, CBD).
What You’ll Learn:
Lipid formulation development and screening tools for optimisation
Key steps in scale-up and industrialisation to ensure consistency and efficiency
Impact of lipid-based softgels on drug delivery and patient outcomes.
To get medicines to patients faster, clinical trials need to be more efficient, with fewer delays and lower costs. Adaptive trials, basket studies, platform trials, synthetic control arms and dose optimisation studies are some of the options for achieving these goals.
Introducing real world control arms to clinical trials has the potential to reduce the need for placebos and the burden of study participation for both patients and investigators. Comparing novel agents with routine care could require fewer patients for the overall study. Using control data from matched patients in earlier studies could reduce the need for control arms altogether. Such options would require significant changes to current clinical trial regulations, but there is undoubted interest in their potential advantages for reducing trial burden.
Developing novel endpoints
Through advances in AI and digital technologies, novel endpoints are being identified to inform decision making and better capture the whole disease burden of patients in clinical trials”
Through advances in AI and digital technologies, novel endpoints are being identified to inform decision making and better capture the whole disease burden of patients in clinical trials, while reflecting the science and the needs of payers.
In oncology, novel biomarkers based on circulating tumour DNA (ctDNA) or circulating free DNA (cfDNA), are increasingly used to guide patient selection for clinical trials. These technologies are creating opportunities for earlier detection and treatment, and for ongoing monitoring for cancer recurrence before relapse becomes apparent in traditional imaging.
In some asthma and chronic obstructive pulmonary disease (COPD) trials, we are now using CompEx: a novel composite endpoint developed at AstraZeneca that combines exacerbations with other indicators of worsening asthma or COPD.1-3 This reduces the size and duration of studies needed when only exacerbations are recorded.
In chronic kidney disease (CKD), using a novel endpoint developed by academic researchers has reduced the time it takes to answer important questions about the treatment efficacy. Instead of using an event-based primary endpoint to study the impact of potassium-removing therapy in patients with CKD in the Phase III STABILIZE‑CKD trial, we are using reduction in estimated glomerular filtration rate (eGFR) over time as an indicator of slowing of disease progression. In this way, it is possible to include patients with earlier stage disease when few major events, such as need for dialysis or transplantation or death, would be expected to happen.
In late-stage cardiovascular trials, Automating Identification Detection Adjudication (AIDA) has been developed to accelerate the classification and confirmation of events compared with standard procedures carried out by physicians.4 Following a study showing high consistency between automated and expert adjudication of cardiovascular (CV) events (ischaemic stroke, transient ischaemic attack), we are now using the system in several studies, including DAPA‑MI, a registry-based trial in patients following a heart attack.
Reducing the environmental impact
… the design of the DAPA-MI trial resulted in 45 percent fewer emissions compared to similar studies with more standard designs”
Reducing the environmental impact is another key goal of designing clinical trials with patients in mind and this can happen at multiple levels.5 These include decreasing face-to-face meetings, reducing the number of wasted lab kits, shortening shipping times and cutting back on single-use plastic. We conducted a clinical trial lifecycle assessment to identify scope for reducing our trials’ carbon footprint and are now applying this information to reduce the environmental footprint of our studies. Indeed, the design of the DAPA-MI trial resulted in 45 percent fewer emissions compared to similar studies with more standard designs.
Improving the clinical trials experience
We are going beyond site-level recruitment, focusing our efforts on outreach and engaging with patients to ensure awareness of clinical trials is an option for treatment.
Having become familiar with online healthcare and volunteering for vaccine trials during the pandemic, patients are increasingly learning about clinical trials and accessing local participating centres through websites such as Breast Cancer Study Locator. It is hoped that this approach will increase the proportion of eligible patients who choose to participate in trials, from the current three percent and broaden the trial participant diversity.
Digital technologies may also facilitate patient recruitment through collaborations with healthcare services and academia”
Digital technologies may also facilitate patient recruitment through collaborations with healthcare services and academia, to identify patients in disease registries and longitudinal cohorts who could be eligible for clinical trials. These resources could also be used for patient follow up. In the DAPA-MI trial, treating physicians in registries can join the study and integrate it within their routine clinical practice, with automated data collection and reduced administrative workload.
Data analytics can identify patients who meet inclusion criteria for a clinical trial from large real‑world datasets, collected from multiple healthcare institutions. Approximately one third of US patients recruited to the Serena-6 trial in metastatic breast cancer have been recruited in this way.
It is also essential to work closely with research coordinators and investigators to understand how new studies can be integrated into clinical research workflows with minimal disruption, as is gaining patient insights during protocol design on the practicalities of participation. What is an acceptable number of clinic visits and duration for appointments? How many investigations and treatments can reasonably be carried out during a visit? What are the logistics of moving between departments, especially for someone who may feel unwell? Trial design must be flexible to accommodate patient needs, variations in infrastructure of participating centres, and patient preferences for in-clinic visits versus online consultations at home.
Harnessing data and digital solutions to augment clinical trial outcomes
Since well before the pandemic, AstraZeneca researchers have been testing clinical biomedical devices, including spirometers to test lung function of COPD patients in clinical trials, ‘home lab tests’ to monitor parameters such as creatinine as an indicator of CKD and ‘wearable devices’ to potentially monitor heart rate and blood pressure. We now estimate that up to 70 percent of data currently collected during hospital visits could be collected from patients at home via online questionnaires and monitoring devices. Today this is approximately only 10 percent.
Patients will not want to juggle multiple devices and apps to report data. Optimising the quality of the patient experience is essential if we are to achieve the benefits digital solutions can offer.
Optimising the quality of the patient experience is essential if we are to achieve the benefits digital solutions can offer”
We plan to use Unify, a single app designed by collaboration of patients, healthcare professionals and AstraZeneca to simplify the trial experience for all participants, in 70-80 percent of our studies. Already available in nearly 30 countries and 65 languages, the app links information the patient needs about a clinical trial, including clinic visits and virtual consultations, medication reminders and patient reported outcomes. Trial investigators and clinicians use the same app to connect with patients, eg, for virtual consultations and to coach patients on using devices such as spirometers at home and to access data and support treatment adherence.
As we become confident in the viability and integrity of devices and apps that can be used at home, we move closer to the point of incorporating them into trials at scale. This could significantly reduce clinic visits for patients, administration for trialists and enable us to include patients who would have previously missed out on opportunities due to living too far from participating centres.
Where next for digital solutions in clinical trials?
Clinical innovation is not about a single app or sensor, it is about a different way of working with trial sites that recognises the value of patients and all those who provide their care.
Consulting widely with regulators…patients and clinicians is vital to ensure the smooth integration of digital solutions into clinical trials”
Changing the way clinical trials have been performed for many years does not come without challenges and risks. Consulting widely with regulators as well as with patients and clinicians is vital to ensure the smooth integration of digital solutions into clinical trials.
In the longer term, digital healthcare has enormous potential not only for clinical innovation in clinical trials but in routine patient care. It offers opportunities for earlier diagnosis, faster treatment based on precision medicine and patient-friendly monitoring and ultimately, improved outcomes.
About the authors
Natalie Fishburn As VP and Head of Development Operations within BioPharma R&D at AstraZeneca, Natalie leads a diverse organisation of over 2,000 employees across 40 countries, responsible for the operational delivery of hundreds of clinical trials from Phase I to III. Natalie joined AstraZeneca in 2013 and has over 25 years of experience in clinical operations, spanning Phase I-IV, across biopharmaceuticals, specialty and oncology therapeutic areas. She is passionate about innovation in clinical trials and accelerating access of life-changing medicines to patients.
Cristina Durán Cristina is Chief Digital Health Officer, R&D, AstraZeneca. In this role she leads Digital Health in Research & Development (R&D) for three key focus areas: Oncology; Cardiovascular, Renal and Metabolism; and Respiratory and Immunology. Her cross‑functional team takes a scientific, evidence-based approach – harnessing the power of AI, data science and digital technology – to accelerate the delivery of new medicines to patients. Cristina has been with AstraZeneca for 13 years, holding senior leadership roles across global commercial, in-country commercial, finance and R&D. Most recently, she led a global transformation in clinical development across R&D functions, focusing on patients’ experience and outcomes.
Serban Ghiorghiu As VP, Head of Clinical, Late Development Oncology, Serban works with a team of clinical development experts to advance potential new oncology medicines leveraging quality and innovation in trial design, delivery and interpretation from phase II programs through approvals, and beyond. As VP, R&D Patient & Clinical Sciences, Serban champions the integration of the patient voice into AstraZeneca’s clinical trials, leading Clinical Trial Diversity efforts, enhancing clinical trial transparency and data sharing, modernising clinical policies, and accelerating the application of new technologies in trials. Serban is passionate about reimaging oncology to redefine cancer care through collaboration, innovation and pursuit of science.
References
Fuhlbrigge A, Bengtsson T, Peterson S, et al. A novel endpoint for exacerbations in asthma to accelerate clinical development: a post-hoc analysis of randomised controlled trials. Lancet Respir Med. 2017 Jul;5(7):577-590.
Jauhiainen A, Scheepers L, Fuhlbrigge A, et al. Impact of season and geography on CompEx Asthma: a composite end-point for exacerbations. ERJ Open Res. 2020 Oct 19;6(4):00246-2020.
Vogelmeier C, Fuhlbrigge A, Jauhiainen A, et al. COPDCompEx: A novel composite endpoint for COPD exacerbations to enable faster clinical development. Respir Med. 2020 Nov;173:106175.
Lea H, Meeson A, Nampally S, et al. Can machine learning augment clinician adjudication of events in cardiovascular trials? A case study of major adverse cardiovascular events (MACE) across CVRM trials. European Heart Journal. 2021 Oct;42(1).
Sustainable Healthcare Coalition. A strategy to reduce the carbon footprint of clinical trials. Lancet 2021; 398: 281-282.
Click the link below to download the full Issue 6 2022 for free!
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.