For diabetes mellitus patients who treat themselves with insulin, the need to self-monitor blood glucose in order to establish their insulin dose is a major burden, and highlights the need to develop non-invasive glucose measurement technologies. Up until now, such non-invasive systems that also have adequate measurement performance under daily life conditions have not been available. However, nanotechnology has the potential to provide a solution. Traversing all scientific disciplines its nanoscale nature means that new functionalities and properties of materials can be created, which contribute to the development of innovative products and applications. Nanomedicine extends from the medical applications of nanomaterials to nanoelectronic biosensors, and there are even possible future applications of molecular nanotechnology. Indeed, nanoparticles’ use in medicine is leaping ahead. For example, both organic and inorganic artificial nanoscale materials may be introduced into the human body and assigned diagnostic functions…
Traversing all scientific disciplines its nanoscale nature means that new functionalities and properties of materials can be created, which contribute to the development of innovative products and applications. Nanomedicine extends from the medical applications of nanomaterials to nanoelectronic biosensors, and there are even possible future applications of molecular nanotechnology. Indeed, nanoparticles’ use in medicine is leaping ahead. For example, both organic and inorganic artificial nanoscale materials may be introduced into the human body and assigned diagnostic functions1,2.
Introduction to diabetes
Diabetes is one of the most prevalent diseases in the world. According to the International Diabetes Federation (IDF), in 2015 415 million people suffered from the illness worldwide, which equates to one in eleven adults3 . And numbers continue to climb; in 2040 642 million people are anticipated to be diabetic. An important aspect of good diabetic control and successful management of the disease is the control of glucose levels, and self-monitoring blood glucose is the established method for assessing glycaemic control. Patients typically self-monitor four to six times a day in order to adapt their insulin dose to their food intake and levels of physical activity, as well as to correct for non-physiological glycaemic excursions. Since 2003 the method of continuous glucose monitoring has been available, but it is not widely established. Although it was designed to significantly reduce the necessary quantity of blood required, and lead to simpler device handling, the underlying process can still be painful. Consequently, patients desire a minimal or non-invasive measuring method.
In principle, non-invasive glucose monitoring is possible. The basis for this is the interaction of glucose molecules with applied energy (radiation, heat and electromagnetic fields, among others). A number of physical principles can be used; for example, light absorption, light scattering, polarisation of light, fluorescence, Raman scattering, and photoacoustic and impedance measurement. No sample material is required, since the applied energy field constitutes directly the measurement probe in a volume of tissue. Scientific studies have already been carried out for each of these methods4-12. However, for the measurement of glucose in a certain tissue volume, a specific interaction of the glucose molecules with the applied energy needs to take place. This is difficult because the concentration of glucose in the human body is relatively low with levels in the parts-per thousand range. Therefore, glucose signals are weak in comparison to other endogenous substances, such as water or albumin, which prevail in much higher concentrations.
Are you looking to explore how lipid formulations in softgels can enhance drug absorption and bioavailability. Register for our upcoming webinar to find out!
3 September 2025 | 3:00 PM BST | FREE Webinar
This webinar will delve into the different types of lipid formulations, such as solutions, suspensions, emulsions, and self-(micro)emulsifying systems. Applications span diverse therapeutic areas including HIV therapy, oncology, immunosuppressants, and emerging treatments like medicinal cannabis (eg, CBD).
What You’ll Learn:
Lipid formulation development and screening tools for optimisation
Key steps in scale-up and industrialisation to ensure consistency and efficiency
Impact of lipid-based softgels on drug delivery and patient outcomes.
The effect of signals that do not originate from glucose (‘noise’) must be compensated and separated from the true glucose signal by use of complex mathematical algorithms. A further critical consideration is that the radiated energy (e.g., a beam of light) hits a fairly complex structure when it penetrates the skin. Because of the strong anisotropy of skin and tissue, the measurement signal differs considerably, depending, for example, on the penetration depth, making it difficult to accurately measure glucose. It is therefore difficult to obtain the required accuracy for the measurement of glucose by non-invasive methods.
Nano hope
The question is: can nanotechnology provide the opportunity to develop measurement systems with the required accuracy? This complex but exciting field applies to the development and production of devices and structures with dimensions <100 nanometers and/or uses characteristic effects and phenomena in this size range (quantum effects). It opens up completely new possibilities for the development of glucose sensors and, therefore, dramatically improving the quality of diabetes patients’ lives.
In nanostructures characteristic effects take place, which are not found in bulk materials. The ratio of surface area to volume is very large. This leads to a number of physical and chemical results such as interfacial phenomena, altered reactivity, charge carrier effects and quantum mechanical changes13,14 as well as enhanced optical properties (for example quantum dot fluorescence). In miniaturised glucose sensors, such nanoscale properties can have several advantages, including higher surface areas (yielding larger currents and faster responses) and improved catalytic activities. This should result in an improved sensitivity of the glucose sensor, a lower signal-to-noise ratio and a higher selectivity of the measurement.
Nanofabrication techniques can generate glucose sensors with very small dimensions (for example by laser ablation, chemical vapour deposition (CVD) or arc discharge (nanotubes, fullerene, etc.))15. Such small sensors can be easily implanted or would be injectable as ‘glucose measurement tattoos’16,17. Additionally, they could potentially avoid the foreign body response of the immune system due to their small size and, consequently, have longer lifetimes. Finally, micro- and nanoelectronic technologies offer the possibility of cost-effective mass production. As the costs of such sensors depend massively on their widespread usage, diabetes therapy might be revolutionised if low-cost glucose sensors based on nanotechnology become available.
Examples of experimental glucose sensors
Micro- and nanoelectronics offer new solutions for glucose sensors with a high signal-to-noise ratio. Nanotubes have been well studied, especially carbon nanotubes. These can be classified as single-walled nanotubes or multi-walled ones. Typically, the diameter of a nanotube is less than one nanometer, while the tube wall can be up to 0.3 nanometers thick (Figure 1; page 00). Such molecular assemblies of carbon atoms have been presented in literature18,19. During the production process at very high temperatures, specific substances can be introduced into these nanotubes. These react with glucose (for example: glucose oxidase à bound to a fluorescent dye).
In such a way, the nanotube functions as a light amplifier: the fluorescence signal can be measured and reflects the glucose concentration. It is envisioned that such nanotubes are wrapped in a dialysis fiber and transplanted under the skin. For the glucose measurement, the skin area is irradiated with a laser and the glucose concentration measured via the fluorescent light induced. The thinner the nanotubes are, the larger the energy band gap and the greater the energy absorption and the fluorescence signal20. On the basis of single wall-nanotubes, enzyme-based optical glucose sensors were investigated21,22. In combination with enzymes for the catalysis of glucose reactions (e.g., immobilised glucose oxidase; GOx), the decisive advantage of such nanostructures is the very large surface area and the efficient electron transfer from enzyme to electrode23. Sensors of this type have a high sensitivity, linear detection range and linearity for detecting glucose. Furthermore, the carbon nanotube (CNT) fiber-based glucose biosensor was shown to be stable for up to 70 days23.
The use of nanostructured materials in glucose sensors, compared with currently-used GOx sensors of the first generation, is shown in Figure 2 (page 00)24. As with ordinary glucose sensors based on GOx, it is possible to improve electron transfer between the enzyme and the electrode by using an electrochemical mediator. This is reduced by the GOx reaction and transfers its electrons to the electrode. In this sense, an approach is to modify the nanotubes with an electrochemical mediator such as ferrocene25 or ferricyanide26. A further improvement in sensor performance is made possible by the combination of CNTs with various nanoparticles such as noble metals (silver, gold, platinum) or silica, titanium dioxide and others (Figure 2, right; page 00). This combination of nanomaterials improves the catalytic activity and the sensitivity of measurement.
Further attractive options for glucose monitoring devices are biocompatible polymeric nanosensors implanted under the skin (like a tattoo). The fluorescence properties of such sensors change in response to changes in the glucose concentration in the interstitial fluid. Such changes can be read using optical interrogation through the skin after light excitation with a laser beam. Such sensors can be based on polymeric nanosensors incorporating boronic acid derivatives to recognise glucose. Nanospheres based on N-isopropylacrylamide containing a covalently bound phenyl-boronic acid derivative, as well as two attached fluorophores, have been synthesised27. In case of a low glucose concentration, the nanospheres are small and hold the fluorophores close together. The consequence is an efficient resonance energy transfer. When there are higher glucose concentrations, the glucose binding to the boronic acid is reduced and subsequently the polymer swells, which increases the average distance between fluorophores. This therefore decreases resonance energy transfer, which increases the donor fluorescence and reduces the acceptor fluorescence. Special fluoresphores can be CNT, which demonstrate a glucose-controlled aggregation onto concanavalin A. Since the aggregates have different fluorescences than free CNTs, detection of glucose is possible through measuring the CNT fluorescence change28.
An interesting nanostructure is that of quantum dots, usually made of semiconductor material (e.g., CdSe, InGaAs or GaInP/InP). Quantum dots can be prepared by molecular beam epitaxy or lithographical processes in semiconductor layer systems (nanolayers with a few atomic layers), for example, with an electron beam and following a dry etching procedure. A quantum dot is small enough to exhibit quantum mechanical properties. Typically, it contains about 10,000 atoms. Charge carriers (electrons, holes) in the dot are so far limited in their mobility in all three spatial directions that their energy no longer continues, and only discrete values may be obtained. Quantum dots thus behave like atoms, but their shape, size or the number of electrons may be influenced. These electronic and optical properties can be tailored15, enabling production of quantum dots that have favourable optical properties for use in different sensors.
Since this sensor itself does not interact with glucose molecules directly, an attachment, for example of GOx to a quantum dot, is necessary. In this case the luminescence of the quantum dots can be quenched by hydrogen peroxide. In the presence of glucose the enzyme generates hydrogen peroxide, which quenches the quantum dots, providing an optical signal change proportional to glucose concentrations. For enhancement of glucose oxidase activity the assembling of a complex with quantum dots of different compounds, such as cadmium telluride, is possible29.
Conclusions
The ongoing miniaturisation of semiconductor integrated circuits has led to nano-technological solutions, which allow for completely new approaches to glucose sensing. At the existing technology level, it is already possible to produce glucose sensors as integrated components, such as integrated circuits. It is now a case of deciding which of the structures can be effectively produced in large quantities and could thus be inexpensive nanotechnologies, which once resolved is likely to enable the development of glucose sensors that offer a number of advantages over known CGM systems. Such sensors could be injectable under the skin and provide novel physical effects created in new nanomaterials, fabricated by specialised nanotechnologies.
References
Thomas A. Nanotecnología, sensores y su aplicación a la medición de la glucosa en pacientes con diabetes mellitus. Nanociencia et Molectronica, 2006; Vol 4 No. 2: 682-694
Zehe A. La Nanotecnologia como fuerza economica: Aplicaciones y Productos Mercantiles. Nanociencia et Molectronica, 2007; Vol 5 No. 2: 1015-1034
IDF diabetes atlas. 7th edition. International Diabetes Federation 2015. http://www.diabetesatlas.org/ Last accessed January 2016
Mattu M, Makarawicz MR, Blank TB, Lorenz AD, Monfre L, Az Evaluation of a Guideless Non-Invasive Glucose Sensor. Diabetes. 2008; 57 (Suppl. 1): A117
Jovanovich L, Ahmann A, Edelman S, Fischer J, Garg S, Monfre S, Ruchti Human Factors Assessment for Measuring Glucose Non-Invasively. Diabetes. 2007; 56 (Suppl. 1): A9
Combs AH, Harjunmaa HI, Kun S, Burelli RA, Keating J, Flaton K, Lock JP, Peura Optical Noninvasive Glucometer achieves ISO required clinical accuracy in pilot study. Diabetes Technology and Therapeutics. 2013; 15 (Suppl. 1): A7
Gal A, Harman-Boehm I, Drexler A, Naidis E, Mayzel Y, Goldstein N, Horman K, Cohen S, Krasilshchikov Y. Enabling frequent blood glucose monitoring at home using a truly Non-invasive device. Diabetes Technology & Therapeutics. 2015; 17(Suppl.1):A 77
Lyandres O, Yuen JM, Shah NC, VanDuyne RP, Walsh JT, Glucksberg Progress Toward an In Vivo Surface-Enhanced Raman Spectroscopy Glucose Sensor. Diabetes Technology and Therapeutics. 2008; 10(4): 257-265
Lipson J, Bernhardt J, Block U, Freeman WR, Hofmeister R, Hristakeva M, Lenosky T, McNamara R, Petrasek D, Veltkamp D, Waydo S: Requirements for calibration in noninvasive Glucose monitoring by Raman J Diabetes Sci Technol. 2009; 3:233-241
DeHennis AD, Tankiewicz S, Raisoni B, Long C, Whitehurst T, Colvin An integrated wireless Fluorimeter for a long term implantable, continuous Glucose monitoring system. Diabetes Technology and Therapeutics. 2013; 15 (Suppl. 1): A58
Kristensen JS: Trans-Cutaneous Fluorescence Lifetime Based Continuous Glucose Reading for Long Term Diabetologia. 2005; 48 (Suppl. 1): A49
Nielsen JK, Christiansen JS, Kristensen JS, Toft HO, Hansen LL, Aasmul S, Gregorius Clinical Evaluation of a Transcutaneous Interrogated Fluorescence Lifetime-Based Microsensor for Continuous Glucose Reading. J Diabetes Sci Technol. 2009;3(1):98-109
Allhoff F, Lin P, Moore D. What is nanotechnology and why does it matter? From science to ethics. John Wiley and Sons Publishing House 2010. Chapter 1. The Basics of Nanotechnology: 1-19. ISBN 1-4051-7545-1
Zehe A, Thomas Tecnología Epitaxial de Silicio, ISBN 3-8311-1438-2, www.libri.de Norderstedt 2000
Thomas A, Torres Tapia E, Ramírez A, Zehe A. Las nanopartículas – Nanomateriales de tantas aplicaciones asombrosas en nanomedicina y nanotecnología biomédica, Internet Electron. J.Nanocs. Moletrón. 2015, 13(1): 2315-2326
Stein EW, Grant PS, Zhu H, McShane MJ. Microscale enzymatic optical biosensors using mass transport limiting nanofilms. 1. Fabrication and characterization using glucose as a model analyte. Anal Chem. 2007; 79(4):1339-1348
Brown JQ, McShane MJ. Modeling of spherical fluorescent glucose microsensor systems: design of enzymatic smart tattoos. Biosens Bioelectron. 2006; 21(9):1760-1769
Radushkewitsch LK, Lukjanowitsch, VM, O struktura ugleroda, obrazujucegosja pri termitscheskom razlozenii okisi uglerodana zeleznom kontakte, J. Fis. Chim. 1952; 26: 88-95
Iijima S, Ichihashi T, Single shell carbon nanotubes of 1nm diameter, Nature. 1993; 363: 603-605
Strano M. The Chemistry of Single Walled Carbon Nanotubes. Applications to nanotube separation and biomolecule detection. Proceedings 2th Internationale Conference on Advanced Technology and Treatments for Diabetes 2009: O-37
Barone PW, Strano MS. Single Walled Carbon Nanotubes as Reporters for the Optical Detection of Glucose. Journal of Diabetes Science and Technology 2009; 3(2):242-252
Zhu Z, Song W, Burugapalli K, Moussy F, Li Y-L, Zhong X-H. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor. Nanotechnology 2010; 21(16):165501
Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends in Molecular Medicine, December 2010; 16(12):584-593
Qiu JD, et al. Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem. 2009; 385:264–269
Barone PW, Baik S, Heller DA, Strano MS. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials 2005; 4:86-92
Barone PW, Strano MS. Reversible control of carbon nanotube aggregation for a glucose affinity sensor. Angew Chem Int Ed. 2006; 45:8138–8141
Cao LH, Ye J, Tong L, Tang B. A New Route to the Considerable Enhancement of Glucose Oxidase (GOx) Activity: The Simple Assembly of a Complex from CdTe Quantum Dots and GOx, and Its Glucose Sensing. Chemistry – A European Journal. 2008; 14:9633–9640
Disclosures
Andreas Thomas is Head of Science in the Diabetes Division of Medtronic, Germany, a manufacturer and distributor of insulin pumps and glucose sensors; Araceli Ramírez is co-worker in Laboratorio de Nanotrónica, Benemerita Universidad Autonoma de Puebla, Mexico with no commercial interest in medical devices; and Alfred Zehe is Head of Laboratorio de Nanotrónica, Benemerita Universidad Autonoma de Puebla, Mexico with no commercial interest in medical devices.
Biographies
Andreas Thomas studied Physics until 1984 at the Technical University Dresden, Germany. He completed his dissertation in solid state physics in 1987 and a postdoctoral thesis in 1992. Afterwards, he worked in different fields of diabetes technology and therapeutics. He is currently Scientific Manager at Medtronic GmbH, Department of Diabetes, in Germany. Furthermore, he is interested in the development of insulin pump therapy, continuous glucose monitoring and the artificial pancreas. He works closely with his former teacher at the University of Dresden, Prof. Alfred Zehe, who heads a laboratory of nanotechnology at the University of Puebla in Mexico. He is a member of the Advisory Board in the German working group of Diabetes and Technology and was Chief Editor of the German Journal Diabetes and Technology. His address for correspondence is: Dr. Andreas Thomas, Earl-Bakken-Platz 1, 40670 Meerbusch, Germany. His email address is: [email protected].
Dr. A. Zehe is a Full Professor of Physics and Director of the Nanotechnology-Center at the Autonomous University of Puebla in Mexico. Over many years, his academic work at universities in Germany involved the progress in solid-state physics, semiconductor materials and microelectronics. His actual research fields in Mexico turn around nanomaterials and nanoelectronics in applications of life sciences and nano-medicine.
Dr. A. Ramírez teaches chemistry at the Autonomous University of Puebla in Mexico and is the leading scientist of nano-microscopy in the Laboratorio de Nanotrónica. As a collaborator of Dr. Zehe’s research group, her actual research fields involve nanomaterials and nanodevices for applications in life sciences and nano-medicine.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.
I would like the rest of this content.
I appreciate your atention!!!!!!
Hi Araceli, to access the full article please login or register here, thanks