news

Nanohybrid drug delivery vehicle could help treat Alzheimer’s

5
SHARES

The chitosan drug delivery vehicle could be used for administering polyphenol ellagic acid (EA), a potential antioxidant treatment for Alzheimer’s and Parkinson’s.

abstract black and blue spotted round 'nanoparticles'

To deliver potentially cytotoxic drugs to specific targets within the human body, researchers have developed a nanohybrid vehicle for drug delivery. The team tested their vehicle with polyphenol ellagic acid (EA), an antioxidant with the potential to mitigate the pathologies of Parkinson’s and Alzheimer’s, but that could be toxic if not delivered in a targeted way.

 

Reserve your FREE place

 


Address the time-to-result challenge posed by short shelf-life radiopharmaceuticals.

20 November 2025 | 3:00 PM GMT | FREE Virtual Panel Discussion

This webinar showcases the Growth Direct System; an RMM (Rapid Microbial Method) that improves on traditional membrane filtration, delivering increased accuracy, a faster time to result, enhanced data integrity compliance, and more control over the manufacturing process.

Key learning points:

  • Understand the benefits of full workflow microbiology quality control testing automation in radiopharmaceutical production
  • Learn about ITM’s implementation journey and considerations when evaluating the technology
  • Find out how the advanced optics and microcolony detection capabilities of Growth Direct® technology impact time to result (TTR).

Don’t miss your chance to learn from experts in the industry – Register for FREE

 

Dr Mahesh Narayan, professor and Dr Sreeprasad Sreenivasan, assistant professor at The University of Texas at El Paso’s (UTEP) Department of Chemistry and Biochemistry discovered that when EA is encapsulated by chitosan, a sugar, its cytotoxicity is reduced and its antioxidant properties, which are desired for treating Alzheimer’s and Parkinson’s, are enhanced. According to the team, the chitosan shell also permits EA delivery via a rapid burst phase and a relatively slow phase, making this nanohybrid vehicle uniquely suited for drug release over extended time periods.

“We are very excited about the new drug delivery materials developed by Drs Narayan and Sreenivasan,” said Dr Robert Kirken, dean of UTEP’s College of Science. “This platform allows for molecules to be impregnated into the material so that the drug can more specifically target the tumour or other tissue site, thus increasing the beneficial effects of the drug while reducing its negative side effects.”

“This work creates a new type of bio-friendly drug delivery vehicle made of recyclable materials,” Narayan said. “The other special feature of this vehicle is that it can deliver the drug via two mechanisms: one rapid and the other a slow-release.”

Narayan’s laboratory focuses on mitigating oxidative stress induced by neurotoxins as a means to prevent neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease, hence experimenting with the antioxidant EA. Sreenivasan’s lab works to interface chemistry, materials physics and biological sciences to develop uniquely designed quantum structures and devices.

The paper was published in ACS Applied Materials & Interfaces.

Share via
Share via