Data from a new device demonstrates maximal levels of extensional flow which manufacturers could use for different processes, without damaging proteins…
Biopharma and food businesses working with proteins now have access to better information about how a type of fluid flow commonly encountered in manufacturing processes can affect the quality of their products, following successful research. This process which can be highly damaging to bio-molecules, such as protein-based biopharmaceutical therapeutics, dissolved in the fluid, is known as ‘extensional flow’ and is occurs when the fluid rapidly accelerates its movement.
An interdisciplinary research team from the University of Leeds and MedImmune, the global biologics research and development arm of AstraZeneca, developed a device that was able to apply extensional flow in the laboratory and used it to study the activity of proteins held in the fluid.
The team found the method can lead to an increased likelihood that a wide-range of proteins including biopharmaceuticals would become less effective.
Explore innovative, purpose-built AI solutions that elevate compliance and efficiency in quality and manufacturing operations.
17 September 2025 | 10:00 AM BST | FREE Webinar
In this webinar, find out how AI tools such as customised large language models (LLMs), orchestrated services, and human-in-the-loop design can streamline processes, enhance training, and improve efficiencies.
Dr David Brockwell from the University of Leeds’ Astbury Centre for Structural Molecular Biology said while many tests existed to assess the effects of changes in temperature or pH on protein stability, this test gauged directly the effects of fluid flows used in manufacturing processes.
Dr Brockwell said, “There are very few existing protein tests available to industry which actually examine how aggregation levels are related to manufacturing conditions. What we now have is a much more accurate way of predicting which proteins can be used in biopharmaceutical drug development and how processes could also be changed to improve their quality.”
Outside manufacturing, common examples of extensional flow include syringes administering liquefied drugs or the effect on water seen when gardeners put their finger over the end of a hosepipe.
Protein folding
Proteins naturally fold into specific shapes in order to operate correctly, but extensional flow can cause them to stretch and unfold, making them less useful.
Once they begin to unfold, proteins stick together, or aggregate, which can block sensitive factory equipment and decrease the effectiveness of the medicines they are contained in, and can even pose a danger to people.
Preventing aggregation is thus an important criterion in the development and licensing of a new biopharmaceutical.
To test the effects of extensional flow, engineers in the team (Professor Nik Kapur and PhD student John Dobson) developed a bench-top device able to very precisely control the strain exerted on proteins in fluid and the extent to which they unfolded.
Using the new device to gather evidence, researchers (Dr Amit Kumar and Mr Leon Willis, led by Professor Sheena Radford and Dr Brockwell) were able to calculate exactly the extent of the protein aggregation, creating a new evidence base for industry. Dr Brockwell and his colleagues found the extent of aggregation was dependent on:
The total time proteins were subjected to the extensional flow,
The level of strain exerted,
The concentration of proteins in the fluid.
The team also found that aggregation in a range of proteins was diverse and was particularly damaging to therapeutic proteins such as biopharmaceutical antibodies under conditions similar to those found in standard manufacturing processes.
Optimum flow
The evidence from the new device means the researchers and MedImmune can now demonstrate maximal levels of extensional flow which manufacturers could use for different processes, without damaging proteins.
Dr Brockwell and his colleagues say that with their new evidence, companies could consider re-designing manufacturing techniques to reduce the pressures exerted on proteins through extensional flow, if they want to make their products reach market faster. Alternatively, instead of changing embedded production methods, the device could instead be used to identify individual protein groups which are resistant to the rigours of manufacture.
“Biopharmaceutical drugs are a growing area of medical innovation, because of their success in treating a number of illnesses, but are very expensive to produce, so any innovation which drug companies can make to improve their costs will have a significant effect” he said.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.