An international team of scientists has developed a water-soluble warped nanographene, that is biocompatible and shows promise for fluorescent cell imaging…
An international team of scientists has developed a water-soluble “warped nanographene”, a flexible molecule that is biocompatible and shows promise for fluorescent cell imaging. The nanographene molecule also induces cell death when exposed to blue laser light. Further investigation is required to determine how nano-carbons could be used for a range of biological applications, such as photodynamic therapy for cancer treatments.
This webinar showcases the Growth Direct System; an RMM (Rapid Microbial Method) that improves on traditional membrane filtration, delivering increased accuracy, a faster time to result, enhanced data integrity compliance, and more control over the manufacturing process.
Key learning points:
Understand the benefits of full workflow microbiology quality control testing automation in radiopharmaceutical production
Learn about ITM’s implementation journey and considerations when evaluating the technology
Find out how the advanced optics and microcolony detection capabilities of Growth Direct® technology impact time to result (TTR).
Don’t miss your chance to learn from experts in the industry –Register for FREE
A group of chemists and biologists at Nagoya University and Boston College, have succeeded in synthesising a water-soluble warped nanographene molecule that is water soluble for the first time. This new molecule expands the biological applications for nano-carbons, including cancer cell imaging and possibly eradication.
Nanographenes, nano-sized carbon molecules, exhibit unique electronic, optical and mechanical properties, and have been recognised as promising materials for electronic and biomedical purposes. However, the flat structure of nano-graphenes leads to stacking and aggregation in solvents, making it difficult to dissolve in various solvents and thus causing complications for biological applications.
In 2013, Professor Kenichiro Itami, director of the JST-ERATO Itami Molecular Nanocarbon Project and the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University and his co-workers synthesised a warped nanographene molecule with a saddle-shaped structure. The unique organisation of the molecule’s 26 graphene rings prevents aggregation, making it soluble in most common organic solvents. Moreover, it exhibits green fluorescence when irradiated with ultraviolet or blue light.
“We were really excited when we succeeded in synthesising the warped nanographene molecule, and we were interested in making it available for biological applications, which we achieved by adding water-soluble functional groups to the molecule,” says Prof Itami.
In the latest study, Prof Itami’s group explains how they developed a straightforward route to make warped nano-graphenes water soluble. First, they replaced five hydrogen atoms with boron moieties, through an iridium-catalyzed C–H borylation reaction. The boron-substituted warped nanographene is then mixed with a compound, called an aryl halide, containing water-soluble chains. A palladium-catalysed Suzuki-Miyaura coupling reaction leads to the water-soluble chains attaching to the edges of the nanographene molecule, making it soluble in water and other organic solvents. This method can also be used to install other functional groups to warped nanographene to easily tune its properties.
The team examined the fluorescent properties of water-soluble warped nanographene. They found that under ultraviolet light, the molecule fluoresced yellow when dissolved in water, and fluoresced green when mixed in the common organic solvent dichloromethane. The new nanographene showed high photostability, meaning that its properties do not change when exposed to light. Rather, the colour of fluorescence changes according to the polarity of the solvents that they are dissolved in.
Next, Prof Itami’s team collaborated with ITbM’s biologists to test if the new molecule could stain live cells for fluorescent cell imaging. They treated HeLa cells, a strain of cervical cancer cells widely used in research, with a water-soluble warped nanographene solution. Microscopic observations showed that the cells took up the molecule over a few hours and it accumulated in the lysosomes, which are organelles found in cells. Cell viability did not change significantly over time, demonstrating that water-soluble warped nanographene has low cytotoxicity and could be used as a fluorescent stain for HeLa cells.
However, the molecule can turn deadly under certain circumstances. When the treated HeLa cells were irradiated with a blue laser, they exhibited cell death after 30 minutes. Untreated HeLa cells did not.
“Although our new warped nanographene has low toxicity to HeLa cells, we were surprised to find that cell death was observed upon irradiating light to the cells stained with the new nanographene,” says Prof Itami.
The specific mechanism of how this cell death occurs is not clear yet, but the group speculates that a toxic singlet oxygen molecule is generated during irradiation and is responsible for cell death. Several other compounds are known to cause photo-induced cell death, but there is still a need to discover molecules that can absorb longer wavelengths to be safely used to treat cancer cells in deep tissues. The researchers envisage that their method to functionalise and tune warped nano-graphenes could lead to biocompatible molecules that absorb different wavelengths of irradiation.
Light-induced cell death in the presence of water-soluble warped nano-graphenes.
“We have succeeded in synthesising a water-soluble warped nanographene showing fluorescence, good photostability and low cytotoxicity, which makes it promising for bioimaging,” says Prof Itami. “This achievement is an excellent example showing the output of the extensive collaboration between chemistry and biology ongoing at our institute. We hope that our molecules can be developed further for a wide range of biological applications through further interdisciplinary collaborations.”
The outcome of this study not only demonstrates the power of nano-carbons for biological applications but also shows the rewarding synergy between synthetic chemistry and biology.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.