How close are we to oral biologic drug delivery? Will biomedical devices be essential in overcoming drug delivery challenges? Discover all this and more in this podcast with MIT’s Assistant Professor Giovanni Traverso.
In this episode, we discuss one of drug delivery’s greatest challenges: how to orally administer biological therapies, such as antibodies and hormones. To address such an important topic, we are joined by Giovanni Traverso, Assistant Professor in the Department of Mechanical Engineering at Massachusetts Institute of Technology (MIT), and a gastroenterologist at Brigham and Women’s Hospital (BWH), Harvard Medical School. His research focuses on the development of next generation drug delivery systems and biomedical devices to support new modes of drug administration.
This webinar showcases the Growth Direct System; an RMM (Rapid Microbial Method) that improves on traditional membrane filtration, delivering increased accuracy, a faster time to result, enhanced data integrity compliance, and more control over the manufacturing process.
Key learning points:
Understand the benefits of full workflow microbiology quality control testing automation in radiopharmaceutical production
Learn about ITM’s implementation journey and considerations when evaluating the technology
Find out how the advanced optics and microcolony detection capabilities of Growth Direct® technology impact time to result (TTR).
Don’t miss your chance to learn from experts in the industry –Register for FREE
[powerpress]
Biologic therapies are growing in popularity, accounting for 13 of the 53 new drugs the US Food and Drug Administration (FDA) approved in 2020. Though promising, these therapeutics present several drug delivery challenges, including that their composition makes them liable to damage in the gastrointestinal (GI) tract, requiring them to be delivered intravenously or subcutaneously. While manageable for infrequent treatments, for those who must be injected regularly, such as diabetes patients, being able to simply swallow a pill may seem much more desirable.
Giovanni Traverso, Assistant Professor, Department of Mechanical Engineering, MIT, and gastroenterologist at Brigham and Women’s Hospital (BWH), Harvard Medical School
Giovanni explained that, when discussing the delivery of biologic drugs, he splits the mechanisms into two broad categories: non-physical and physical modes of delivery. “From a non-physical perspective, what I mean is molecules or additives that enhance transport across the mucosa/protective layer in the GI tract… for example, there are a couple of smaller peptides or proteins that actually do exist in an oral formulation and those apply either an additive that transiently enhances transport or the drug has somehow been modified to stabilise it to facilitate its transport,” he explained. These systems are limited by the size of the molecule with smaller peptides, proteins and even insulin able to be delivered in this fashion, but not monoclonal antibodies and other larger molecules.
Physical techniques, he described as those that involve some kind of intervention such as a medical device, eg, a hypodermic needle for injections, or ultrasound at certain frequencies to propel drugs into tissue. “On the physical side we have actually been able to deliver a very broad set of molecules, including monoclonal antibodies,” stated Giovanni.
We went on to discuss his team’s recent work on the development of gastric autoinjectors and how, during the process, they broke it up into three challenges: a. ensuring the sharp needle is always in contact with the desired tissue, b. how to autonomously trigger the drug delivery event/injection, and c. how to fit enough drug within a blueberry-sized device, a safe capsule size for oral administration. They addressed orientation challenges in a paper published two years ago and reviewed materials that could hold energy from a compressed spring, with brittle fracture mechanics, that could sense a humid environment. They eventually designed sugar cylinders that had these elements and could be adjusted to control the rate of dissolution and drug release through the needle.
To overcome the challenge of size and ensure they could deliver enough drug, they developed solid formulations of biologic drugs, such as insulin. However, a fluid dose was more desirable, and in a recent paper published in Nature Biotechnology they displayed the development of a self-orientating gastric autoinjector system able to release a liquid. The research was done in collaboration with Novo Nordisk and demonstrated that the system could deliver insulin, a GLP-1 receptor analogue, adrenaline and adalimumab, a monoclonal antibody.
Then we explore other issues surrounding the oral delivery of biologics, including that future developments into miniaturising these device systems may be necessary to ensure compliance and that not all drugs would be suitable for this kind of administration. “Which drug is the right drug to go into these systems? It is not that you convert every injectable – and there are drugs that I think are more amenable to being administered orally,” explained Giovanni, adding that for instance those drugs with a narrow therapeutic window may not be the best option due to variability in absorption caused by inherent differences in peoples’ GI tracts.
To learn about other drug delivery systems, including those Giovanni has helped develop to allow once-a-month dosing of contraceptives and HIV medications, and how critical biomedical devices are likely to be in overcoming various drug delivery challenges, listen to the episode!
Please join the conversation and leave your thoughts in the comments – we love hearing your feedback – and look out for our next episode coming soon!
The paper describing the team’s oral drug delivery screening tissue culture system was published in Nature Biomedical Engineering: https://doi.org/10.1038/s41551-020-0545-6
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.