reference

Fahrzi B, Cetinkaya C. Non-contact single cell adhesion and micromechanical property characterisation with ultrasound. 2017;22(4):36-40

Posted: 7 September 2017 | | No comments yet

REFERENCES

1. Rodriguez ML, McGarry PJ, Sniadecki NJ. Review on cell mechanics: experimental and modeling approaches. Applied Mechanics Reviews. 2013;65:060801.
2. Johnson KL, Kendall K, Roberts AD. Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society. 1971:301–313.
3. Isrealachvili JN, Intermolecular and Surface Forces. Academic Press, San Diego. 1991.
4. Bowen WR, Lovitt RW, Wright CJ. Atomic force microscopy study of the adhesion of Saccharomyces cerevisiae. Journal of Colloid and Interface Science. 2001;237:54-61.
5. Bergström L. Hamaker constants of inorganic materials. Advances in Colloid and Interface Science. 1997;70:125-169.
6. Visser J. On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Advances in Colloid and Interface Science. 1972;3:331-363.
7. Farzi B, Cetinkaya C. Micromechanical and Adhesive Properties of Single Saccharomyces Cerevisiae Cells. Accepted for Publication in Journal of Physics D: Applied Physics. 2017.
8. Azeredo J, Ramos I, Rodriguks L, Oliveira R, Teixeira J. Yeast flocculation: a new method for characterising cell surface interactions. Journal of the Institute of Brewing. 1997;103:359-361.
9. Zinin PV, Allen JS III, Levin VM. Mechanical resonances of bacteria cells. Physical Review E. 2005;72:061907.
10. Ford LH. Estimate of the vibrational frequencies of spherical virus particles. Physical Review E. 2003;67:051924.
11. Stenson JD, Hartley P, Wang C, Thomas CR. Determining the mechanical properties of yeast cell walls. Biotechnology Progress. 2011;27:505-512.
12. Smith AE, Zhang Z, Thomas CR, Moxham KE, Middelberg AP. The mechanical properties of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 2000;97;9871-9874.
13. Smith AE, Zhang Z, Thomas CR. Wall material properties of yeast cells: Part 1. Cell measurements and compression experiments, Chemical Engineering Science. 2000;55:2031–2041.
14. Touhami A, Nysten B, Dufrêne YF. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy, Langmuir. 2003;19:4539–4543.
15. Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science. 2004;305;1147–1150.
16. Alsteens D, Dupres V, Evoy KM, Wildling L, Gruber HJ. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM. Nanotechnology. 2008;19:384005.
17. Elvira L, Vera P, Cañadas FJ, Shukla SK, Montero F. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Ultrasonics. 2016;64:151–161.
18. Zarandi MM, Bonakdar A, Stiharu I. Investigations on Natural Frequencies of Individual Spherical and Ellipsoidal Bakery Yeast Cells, in: Excerpt from the Proceedings of the COMSOL Conference, 2010: p. 3.
19. Bryan AK, Goranov A, Amon A, Manalis SR. Measurement of mass, density, and volume during the cell cycle of yeast, Proceedings of the National Academy of Sciences of the United States of America. 2010;107:999–1004.
20. Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T. In-situ single cell mechanical characterization of w303 yeast cells inside environmental-SEM, in: Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, IEEE, 2007: 1022–1027.

Send this to a friend