reference

Beyond API monitoring – Kaiser Optical Systems

Posted: 9 February 2018 | | No comments yet

Esmonde-White, K. A., Cuellar, M., Uerpmann, C., Lenain, B., & Lewis, I. R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 409, 637–649 (2016). Strachan, C. J., Rades, T., Gordon, K. C. , & Rantanen, J. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J. Pharm. Pharmacol. 59, […]

  1. Esmonde-White, K. A., Cuellar, M., Uerpmann, C., Lenain, B., & Lewis, I. R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 409, 637–649 (2016).
  2. Strachan, C. J., Rades, T., Gordon, K. C. , & Rantanen, J. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J. Pharm. Pharmacol. 59, 179–192 (2007).
  3. Hédoux, A., Guinet, Y. , & Descamps, M. The contribution of Raman spectroscopy to the analysis of phase transformations in pharmaceutical compounds. Int. J. Pharm. 417, 17–31 (2011).
  4. De Beer, T,. et al. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int. J. Pharm. 417, 32–47 (2011).
  5. Knop, K,. & Kleinebudde, P. PAT-tools for process control in pharmaceutical film coating applications. Int. J. Pharm. 457, 527–536 (2013).
  6. Müller, J., Knop, K., Wirges, M. , & Kleinebudde, P. Validation of Raman spectroscopic procedures in agreement with ICH guideline Q2 with considering the transfer to real time monitoring of an active coating process. J. Pharm. Biomed. Anal. 53, 884–894 (2010).
  7. Wikström, H., Marsac, P. J,. & Taylor, L. S. In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. J. Pharm. Sci. 94, 209–219 (2005).
  8. Nagy, B. , et al. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process. Int. J. Pharm. 530, 21–29 (2017).
  9. Abu-Absi, N. R. , et al. Real Real-time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol. Bioeng. 108, 1215–1221 (2011).
  10. Berry, B., Moretto, J., Matthews, T., Smelko, J. , & Wiltberger, K. Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Biotechnol. Prog. 31, 566–577 (2015).
  11. Mehdizadeh, H. , et al. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors. Biotechnol. Prog. 31, 1004–1013 (2015).
  12. Whelan, J., Craven, S. , & Glennon, B. In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol. Prog. 28, 1355–1362 (2012).
  13. Craven, S., Whelan, J. , & Glennon, B. Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J. Process Control 24, 344–357 (2014).
  14. Berry, B. N. , et al. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture. Biotechnol. Prog. 32, 224–234 (2016).
  15. Matthews, T. E., et al. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability and biopharmaceutical protein production. Biotechnol. Bioeng. 113, 2416–2424 (2016).