• Facebook
  • Twitter
  • LinkedIn
  • Google +
  • RSS

Informatics: The use of LIMS in the management of translational research and pilot manufacturing operations

22 October 2013  •  Author(s): Diana Russom (Department of Information Technology Systems, Beckman Research Institute of the City of Hope) / Amira Ahmed and Nancy Gonzalez (Laboratory for Cellular Medicine, Beckman Research Institute of the City of Hope) / David L. DiGiusto (Laboratory for Cellular Medicine and Department of Virology, Beckman Research Institute of the City of Hope)

The volume of data generated in modern medical research centres is growing exponentially and becoming more diverse as advancements in automation and biotechnology transform the basic operations of these laboratories and clinics. Patient care and laboratory instrumentation generate data at a rate that rapidly outpaces the ability to track and process information with traditional (manual) methods. We found that a robust electronic information management system is essential to maintain control over operations in a dependable and compliant fashion. Over the last seven years, we have developed and implemented a Laboratory Information Management (LIMS) system in our academic translational research laboratory and have since expanded to related research and clinical manufacturing operations. We describe examples of how the LIMS system was developed, implemented and how workflows were streamlined; and time and labour were reduced for routine data collection and management requirements, all while ensuring compliance with federal and state regulations.

Our original intent was to implement a system that could manage an active translational cell therapy laboratory and would aid in organising and reporting on preclinical development and clinical manufacturing activities including (but not limited to) capturing, storing and tracking of large amounts of compliance documentation; employee training records; raw material inventories; equipment calibration schedule management; product testing results and the tracking of samples for clinical use. Because we were developing data to support Phase I clinical trials in gene therapy, we required a system that would maintain compliance with Good Manufacturing Practices (GMP), Good Laboratory Practice (GLP) and Good Tissue Practices (GTP), known collectively as GXPs1-4.

After creating specifications for data capture including the various sources, formats, quantity of data, relationships between diverse data sets and the structure of reports generated, we reviewed and screened products from four vendors as previously described5. We ultimately selected a system that best met our programmatic needs, could leverage existing equipment (see hardware considerations box) and did not exceed our budget. In order to minimise on-going costs and in anticipation of future system modifications, we trained an existing member of our laboratory to develop and configure the system, eliminating significant post-implementation consulting costs. We also involved the targeted end users (laboratory personnel) in the design and initial testing to ensure acceptance upon implementation. User training involved an overall introduction with hands on training. Most laboratory personnel were able to fully utilise the system with minimal errors within a week. Once deployed, lab personnel readily transitioned to the new system and found it user friendly and helpful.

The rest of this content is restricted to logged-in subscribers. Login or register (it's free!) to view the full content.

Leave a reply

 

Webinar: NIR Spectroscopy for Assessing Blend Uniformity in the Pharmaceutical IndustryLEARN MORE
+ +