A WHO review has concluded that while innovative therapies have been developed for TB and C. diff, other priority pathogens are likely to develop resistance to future therapies.
The World Health Organization (WHO) have released their third annual review of the clinical antibacterial pipeline. The report, published in December 2019, investigated the extent that therapeutics currently in Phase I to III trials, or with clinical approval within the last three years, address the organisation’s priority pathogens: Gram positive and negative bacteria, Mycobacterium tuberculosis (TB) and Clostridioides difficile (C. diff).1
This webinar showcases the Growth Direct System; an RMM (Rapid Microbial Method) that improves on traditional membrane filtration, delivering increased accuracy, a faster time to result, enhanced data integrity compliance, and more control over the manufacturing process.
Key learning points:
Understand the benefits of full workflow microbiology quality control testing automation in radiopharmaceutical production
Learn about ITM’s implementation journey and considerations when evaluating the technology
Find out how the advanced optics and microcolony detection capabilities of Growth Direct® technology impact time to result (TTR).
Don’t miss your chance to learn from experts in the industry –Register for FREE
The document concluded that only two of the eight therapeutics with clinical approval against priority pathogens have novel modes of action, likely to prevent resistance for longer. Furthermore, of the 50 antibiotics and combinations in the clinical pipeline, 32 address WHO priority pathogens, but just seventeen targeting TB and C. diff have novel mechanisms. According to the organisation, only a handful of these innovative therapeutics will make it to market in the next five years.1
The review concluded that approved drugs and those in the clinical pipeline were insufficient against priority pathogens aside from TB and C. diff.”
Despite efforts to raise awareness and the priority of antibacterial R&D, the report highlights that private investment has decreased, with many large pharma companies abandoning their efforts altogether. Small- or medium-sized enterprises (SMEs) are now the primary drivers of this sector. However, some of these businesses are struggling, primarily due to the costs of running clinical trials and difficulties identifying new targets. For example, the report listed Achaogen’s filing for bankruptcy, despite its drug plazomicin making it to the WHO Model List of Essential Medicines.1
Market authorised agents
Since WHO commenced annual antibacterial pipeline reviews in 2017, eight new antibiotics have been approved for use by regulatory bodies. Their indications are primarily for the treatment of complex urinary tract infections (cUTIs) and/or complicated intra-abdominal infections (cIAIs).
The WHO highlighted that, at least in the approved agents, therapeutics for critical priority pathogens aside from TB and C. diff were lacking (see Figure 1).
Vaborvactam
Vaborvactam is a first in class β-lactam/β-lactase inhibitor (BLI), approved for use in combination with meropenem against Enterobacteriaceae. Vaborvactam combination therapy was added into the WHO Model List of Essential Medicines.
Relebactam
Relebactam is a further BLI approved for treatment of Class A and C β-lactams.
Pretomanid
Pretomanid has been authorised for use in combination with bedaquiline and linezolid to treat extremely drug resistant TB and treatment-intolerant or non-responsive multidrug-resistant pulmonary TB. Pretomanid is a nitroimidazole – the first approved drug by the not-for-profit organisation TB alliance.
Figure 1: Diagram of the WHO’s priority pathogens listed from global priority to medium priority (credit: ‘Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug resistant bacterial infections, including tuberculosis’, WHO 2).
Clinical pipeline drugs
TB agents:
The report states that of the 12 drugs in development against TB, seven are innovative with no evidence of cross resistance. The targets of these drugs include decaprenylphosphoryl-β-D-ribose 2-epimerase (DprE1), leucyl-tRNA synthetase (LeuRS) and DNA gyrase (GyrB). The other drugs are oxazolidinones, a riminophenazine, an imidazopyridine amide and an ethambutol derivative.
DprE1 inhibitors
DprE1 is a flavoenzyme, which catalyses synthesis of D-Arabinofuranose, a component of arabinogalactan and arabinomannan, essential for the formation of the TB pathogen cell wall.3 It is currently being targeted by four drugs under development.
BTZ-043 is the most advanced oral DprE1 inhibitor, according to the WHO report; its Phase I trial is complete and Phase II trial registered. The Phase II trial is a multiple ascending dose (MAD) test, to evaluate its safety, tolerability and bactericidal activity.3
So far, BTZ-043 has shown high selectivity for mycobacterium, with activity against all tested TB species. Pre-clinical analysis also established limited toxicity with no ill effects noted in the safety panel (assessing neurotoxicity, cardiotoxicity and respiratory toxicity).3
LeuRS inhibitor
GSK-3036656 (GSK656) is an oral LeuRS inhibitor, called an axoborole. LeuRS is an essential enzyme for protein synthesis. It has two catalytic sites:
an aminoacylation site, which charges tRNALeu with leucine
a proof-reading site which hydrolyses incorrectly charged tRNALeu.4
GSK656 was well tolerated after single and multiple doses in a Phase I trial, with no reports of serious adverse events.
GyrB inhibitor
SPR720 is an orally administered prodrug of SPR719, an aminobenzimidazole inhibitor of gyrase B/ParE which has broad spectrum antibacterial activity. In pre-clinical models, SPR720 has been equally as effective as the currently approved drug moxifloxacin, both are used in combination with rifampin and pyrazinamide.5
SPR720 completed its Phase I trial and is also being developed as a therapeutic against non-TB mycobacterial infections.
C. diff agents:
Ridinilazole
Ridinilazole, in recruitment for its Phase III trial, is a non-absorbable antibiotic being developed to target C. diff and is a novel drug called a bis-benzimidazole. Its mechanism of action is not completely understood; however, it significantly reduces toxin production by C. diff and diminishes the inflammatory response to the infection. One study suggested that this may occur through the disruption of the bacterial cell division machinery, preventing the formation of the septum.6
The septal ring, formed of approximately 12 proteins, assembles at the point where a dividing bacterial cell splits, the division septum – a dividing membrane which separates the two bacterial cells – then forms where the ring is after the genetic material has been divided.
MGB-BP-3
This non-absorbable antibiotic, which binds in the C. diff DNA minor groove and inhibits transcription, is currently in Phase IIa clinical trials assessing the safety, tolerability and efficacy of incremental doses of MGB-BP-3 in patients with Clostridium difficile-associated disease (CDAD).
In October 2019, MGB Biopharma, the producers of the therapeutic, revealed the first cohort of patients had completed the lowest dose. The preliminary results indicated MGB-BP-3 was well tolerated and had high efficacy, both after the completion of a 10-day therapy course and at the eight-week follow up.7
Of note, MGB-BP-3 was shown to have strong bactericidal activity against the most virulent strain of C. diff – the BI/NAP1/027 strain, which is largely resistant to current therapies.7
A safety committee review of the first cohort concluded with no concerns and so the next cohort of patients is being recruited at sites in Canada and the US. Further results are expected in 2020.7
The WHO’s findings
…despite the efforts of the WHO to drive research into antibacterials, the pipeline and approved drugs are insufficient to combat many of the priority pathogens.”
The review concluded that approved drugs and those in the clinical pipeline were insufficient against priority pathogens aside from TB and C. diff. They claim this is largely due to a lack of innovative new structures without known cross-resistance for these bacteria. According to the report, this is unlikely to change due to the expense associated with identifying novel structures for SMEs.1
The report states that “the current pipeline could lead to a further 11 new antibiotic approvals in the next five years, the majority of which are modifications of existing classes and not active against the critical MDR (multiple drug resistant) and XDR (extremely drug resistant) Gram-negative bacteria.” It is feared that agents will become stagnant in the pipeline, as SMEs fail to enter clinical trials due to a lack of funding at the Phase II and Phase III stages.1
Summary
To conclude, despite the efforts of the WHO to drive research into antibacterials, the pipeline and approved drugs are insufficient to combat many of the priority pathogens. The withdrawal of private funding and large pharmaceutical companies have left SMEs driving research, but limited funding and high costs in drug development will likely result in stagnation of products and a lack of innovation moving forwards.
References:
2019 Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline [Internet]. December 2019. World Health Organization. [Cited: 30 January 2020]. Available at: https://apps.who.int/…
Weiss, D. Bacterial cell division and the septal ring [Internet]. September 2004. Molecular Microbiology. [Cited: 4 February 2020]. Available at: https://onlinelibrary.wiley.com/…
MGB Biopharma Announces Promising Phase IIa Clinical Trial Update for MGB-BP-3 [Internet]. 11 October 2019. MGB Biopharma. [Cited: 4 February 2020]. Available at: https://www.mgb-biopharma.com/…
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.