Large DNA-sequencing projects such as the Human Genome Project have provided the scientific community with a new challenge: to try to understand the information encoded in the primary sequence of the genome. Studies investigating the role and function of the components of the genome are often called functional genomics. These studies require a constant improvement […]
Large DNA-sequencing projects such as the Human Genome Project have provided the scientific community with a new challenge: to try to understand the information encoded in the primary sequence of the genome. Studies investigating the role and function of the components of the genome are often called functional genomics.
This webinar showcases the Growth Direct System; an RMM (Rapid Microbial Method) that improves on traditional membrane filtration, delivering increased accuracy, a faster time to result, enhanced data integrity compliance, and more control over the manufacturing process.
Key learning points:
Understand the benefits of full workflow microbiology quality control testing automation in radiopharmaceutical production
Learn about ITM’s implementation journey and considerations when evaluating the technology
Find out how the advanced optics and microcolony detection capabilities of Growth Direct® technology impact time to result (TTR).
Don’t miss your chance to learn from experts in the industry –Register for FREE
These studies require a constant improvement of tools that fulfil specific requirements. Recently, we have created a new powerful tool to improve functional genomic studies by combining two distinct methods: RNAi and BAC recombination technology.1
RNAi and its limits
RNA silencing or RNA interference (RNAi) is a formal description of the biological response to double-stranded RNA (dsRNA) initially discovered in the nematode Caenorhabditis elegans.2 By injecting dsRNAs into worms it was found that genes whose sequences were complementary to those of introduced dsRNAs were silenced.3 Subsequent work by many groups showed that the RNAi pathway, which is highly conserved in many organisms, is also present in mammals and most other eukaryotes. Briefly, in this pathway the RNase enzyme Dicer processes the dsRNAs into short interfering RNAs (siRNAs) of 21 to 28 nucleotides in lengths. These siRNAs are subsequently rearranged into a silencing complex called RISC (RNA-induced silencing complex) where they, now single-stranded, bind tightly to an Ago protein.4,5 Then the siRNA-containing RISCs identify complementary or nearly-complementary messenger RNA (mRNA) and mediate the cleavage of the target-mRNA (see review by Meister and Tuschl6).
In the same manner, that RNAi became a standard methodology for silencing the expression of specific genes in mammalian cells, the concerns about specificity and effects on unintended targets (off-target) increased. Several recent studies have shown that the specificity of silencing is not absolute. Transfection of dsRNA can activate the innate immune pathways including interferon-regulated responses that serve as antiviral mechanisms. Here, dsRNA activates the enzyme PRK (dsRNA-dependent protein kinase) resulting in sequence-independent destruction of RNA and a general repression of protein synthesis.7,8
Also off-target effects can occur if as little as 6 nucleotides of the siRNA are complementary to the 3´ UTR of a non-target mRNA.9,10 In addition, off-target effects at the level of protein synthesis without having corresponding effects on mRNA levels have been reported.11
Rules for effective RNAi experiments
It is therefore important to include control experiments to confirm the specificity of an RNAi phenotype. Four guidelines have been suggested to avoid misinterpreting results: 1. A good algorithm to design a siRNA with particular attention to the 5´ end of the antisense strand; 2. Several siRNAs against the same target mRNA should give the same phenotypic outcome, yet a negative control should not score. In addition, it is advisable to monitor the target protein levels in addition to the mRNA levels to accomplish discrimination between effective and ineffective siRNA; 3. Working with the lowest possible siRNA concentration; and 4. The performance of a rescue experiment where a version of the targeted gene, which cannot be recognised by the siRNA, reverts the phenotype.12
Even though rescue experiments are claimed to be the ultimate test of the specificity of an RNAi experiment, several hurdles have to be overcome. Silent point mutations can be introduced into a cDNA encoding the targeted gene, that destroy complementarities with the siRNA.13 This approach is limited by the availability of a full-length cDNA and an often complex cloning procedure. Furthermore, cDNAs do not allow the expression of alternatively spliced transcripts and due to their typically used artificial promoters will likely be overexpressed. Therefore, they mostly do not reflect physiological expression levels which may cause artificial effects.
We have developed a technology that circumvents the above-mentioned limits of cDNA and established bacterial artificial chromosomes (BACs) as rescue constructs for RNAi experiments in mammalian tissue culture cells.
BAC, YAC and PAC
During the last two decades, vectors containing complementary DNA (cDNA) constructs have been the key instrument for genetic engineering and studies of gene function. The introduction of cDNA/mRNA and subsequent protein expression in bacteria and eukaryotic cells can easily be achieved by cloning the desired construct into numerous vectors and plasmids available. Several cloning strategies allow modifications such as insertion of mutations, addition of markers etc. But these techniques are limited in some important ways: (a) the amount of DNA which can be inserted into high copy vectors is limited and inserts bigger than 10 kb are often difficult to obtain; (b) the expression of the cloned cDNA is typically controlled by a promoter derived from a viral or model vertebrate promoter that often does not reflect the physiological expression pattern of the gene. Therefore, the introduced gene is mis-expressed, interfering with the fine-tuned regulatory machinery in the cell. Artificial effects can occur which are difficult to interpret.
The results of the Human Genome Project showed that only 5% of the genome encode genes, but most of the regulatory elements are located in the intergenic DNA, the sequences between the coding sequence of the genes. These elements are responsible for the proper expression of a gene in time and space. In eukaryotic cells they are called expression domains and are believed to contain all elements necessary for correct gene expression.14-18
To carry out functional genomic studies it became necessary to include those cis-acting regulatory elements in special expression vectors. Artificial chromosome constructs such as bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs) and P1 artificial chromosomes (PACs) serve this purpose well. They are characterised by much larger cloning capacities (ranging from 100 to 1000kb) than standard plasmids.18,19
By including the genomic sequence instead of using cDNA the expression of alternatively spliced transcripts is possible because all regulatory elements of a gene are present. Compared to YACs, especially BACs harbour some interesting features making them an ideal basis to study genes: (i) they possess high transformation efficiencies, (ii) form stable clones, and (iii) bacterial clones and libraries grow much faster than YACs.20 BACs are now also the preferred choice to generate transgenic animals.19,21
We have now demonstrated a new application of BACs – a reliable method to create RNAi-resistant transgenes by expressing murine bacterial artificial chromosomes in human cells. To facilitate selection of the cells expressing the transgene a selectable marker had to be placed onto the BAC, which was done by recombination.
BAC recombination
Conventional cloning methods greatly rely on the disposition of restriction endonuclease cleavage sites to ligate DNA molecules. But in long DNA fragments the frequent occurrence of cleavage sites limits the size of the DNA fragment that can be manipulated to less than ca. 20kb.22
DNA engineering strategies relying on homologous recombination to alleviate the limitations of the use of restriction enzymes and allow a wide range of DNA modifications at any chosen position and unlimited by fragment size (reviewed by Muyrers et al.23). A flexible assay for DNA manipulations on the basis of homologous recombination between linear and circular DNA has been developed in Escherichia coli. Here, the integration site is defined through homologous regions, which are stretches of DNA shared by the DNA molecules that recombine. For efficient recombination homologous arms of only 35 to 60 nucleotides are required.13 Since these regions can be selected at will, there is no limitation in the position of the modification. Thus, homologous arms are short enough to be made by oligonucleotide synthesis and are subsequently attached to the DNA fragment via polymerase chain reaction (PCR). This results in a linear PCR fragment, which exhibits homologous arms on both ends. Because homologous recombination events are rare, an antibiotic-resistant gene is included in the PCR fragment. Therefore, cells carrying the recombinant are easily identified through a selection procedure.
In a first round, a plasmid carrying the genes of the recombinases RecE and RecT is introduced into the cells. After inducing the L-Arabinose-sensitive promoter24, both proteins interact with each other and function via a double strand break repair mechanism25, whereas RecE is a 5’-3’ exonuclease and RecT a DNA annealing protein26. Since a pSC101 temperature-sensitive origin27 is used to express these proteins, a temperature shift simply eliminates their plasmids after side-specific recombination took place. The efficiencies achieved with this so called ‘ET cloning’ or ‘recombineering’ are consistently high and typically more than 80% of the candidates are correctly recombined.25
BACs and RNAi rescue experiments
A successful rescue experiment is based on the fact that an RNAi resistant version of the target gene is expressed in the cells, reversing the induced phenotype. We tested a new approach by introducing BACs encoding orthologous genes from a closely related species. RNAi resistance of these transgenes was achieved by using BACs encoding mouse not human genes. Mouse homologous are currently known for more than 99% of the human genes.28 They exhibit large homologies to human proteins, but sufficiently differ on DNA levels. Therefore, in a cell that additionally expresses a mouse orthologous, RNAi will only run down the human transcript. Mouse proteins are very likely to function in a human environment and hence they are able to replace a human protein depleted by RNAi. Furthermore, this cross-species strategy confers RNAi resistance to the transgenes without the need to introduce point mutations.
In order to allow stable integration of the BAC into mammalian cells we developed a selection cassette (kanamycin/neomycin) to be used in Escherichia coli as well as in mammalian cells. Subsequently, these modified BACs were transfected into HeLa cells and stable cell clones were selected. Expression of the murine transgene at physiological levels and existence of alternative spliceforms were confirmed by RT-PCR. Then, RNAi experiments using esiRNA (endoribonuclease-prepared siRNA29) were carried out on essential genes. RT-PCR showed that there was a strong reduction of the human-specific product compared with the mouse-specific product. Furthermore, BAC-transgenic HeLa, transfected with esiRNA targeting an essential human transcript, grew essentially like wildtype HeLa as well as HeLa transfected with a negative control (firefly luciferase). In contrast, transfection of the same esiRNA into wild-type HeLa resulted in a markedly lower cell density and many dead cells. Further analysis of the mitotic spindle morphology revealed, that the spindle defect, caused by the esiRNA used, was reverted in the BAC-transgenic HeLa (see Figure 1).
This concluded that the introduced transgene was able to rescue the RNAi-induced phenotype. In principle, this concept should be applicable not only to human and mouse, but also to other closely related species, e.g. Drosophila and nematode strains.
However, it is important to consider that even through less than 1% of the human genes will not have any orthologous in the mouse genome, there is a risk that a cross-species BAC will not rescue. In these cases, the RNAi target region or the 3´ UTR of a BAC from the same species needs to be modified by point-mutagenesis.30
A new era
We have provided a straightforward way to test specificity of RNAi experiments by establishing BACs as rescue constructs in mammalian tissue culture cells. Using this technology will help to probe the specificity of RNAi experiments and hence will make these experiments more reliable. A simple variation of our approach led to further applications: instead of using BAC recombination to insert a selectable gene in the BAC backbone, fusion proteins carrying fluorescence markers (e.g. GFP) followed by a selectin marker cassette, were generated. These fusion proteins can now be used in localisation studies, function analysis and to purify protein complexes (Figure 2).
Again, the physiological expression of the transgenes will avoid artefacts of mis-localisation of the fusion proteins, or co-purification of proteins complexes, that do not normally form under physiological conditions. Using this approach in combination with RNAi also allows the sole expression of the tagged transgene, hence mimicking homologous recombination. With the full development of these technologies and its scaling to high throughput generation of BAC transgenic cell lines, a new era in mammalian functional genomics may just be around the corner.
References
Kittler R, Pelletier L, Ma C, Poser I, Fischer S, Hyman AA, Buchholz F. 2004. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc. Natl. Acad. Sci.102, 2396-2401
Fire A, Albertson D, Harrison SW, Moerman DG.1991. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development. 113, 503-514
Fire A et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391, 806-811
Hammond SM, Bernstein E, Beach D, Hannon GJ. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 404, 293-296
Martinez J, Tuschl T. 2004. RISC is a 5´ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975-980
Meister G, Tuschl T. 2004. Mechanisms of gene silencing by double-stranded RNA. Nature. 431, 343-349
Williams BR. 1997. Role of double-stranded RNA-activated protein kinase (PRK) in cell regulation. Biochem Soc Trans. 25, 509-513
Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. 2003. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834-839
Jackson AL, Linsley PS. 2004. Noise amidst the silence: off-target effects of siRNAs?. Trends Genet. 20, 521-524
Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A. 2006. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods. 3, 199-204
Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS. 2004. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA. 101, 1892-1897
Hannon GJ, Rossi JJ. 2004. Unlocking the potential of the human genome with RNA interference. Nature. 431, 371-378
Zhang Y, Buchholz F, Muyrers JPP, Stewart AF. 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nature Genet. 20, 123-128
Laemmli UK, Kas E, Poljak L, Adachi Y. 1992. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Div. 2, 275-285
Dillon N, Grosveld F. 1994. Chromatin domains as potential units of eukaryotic gene function. Curr Opin Genet Dev. 4, 260-264
Bonifer C. 2000. Developmental regulation of eukaryotic gene loci: which cis-regulatory information is required?. Trends Genet. 16, 310-315
Montoliu L. 2002. Gene transfer strategies in animal transgenesis. Cloning Stem Cells. 4, 39-46
Giraldo P, Montoliu L. 2001. Artificial chromosome transgenesis in pigmentary research. Transgenic Res. 10, 83-103
Frijters ACJ, Zhang Z, van Damme M, Wang G-L, Ronald PC, Michelmore RW. 1997. Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic framents of lettuce. Theor Appl Genet. 94, 390-399
Magdaleno SM, Curran T. 1999. Gene dosage in mice – BAC to the future. Nat Genet. 22, 319-320
Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA, de Jong PJ. 1994. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84-89
Muyrers JPP, Zhang Y, Stewart AF. 2001. Techniques: Recombinogenic engineering – new options for cloning and manipulating DNA. Trends Biochem Sci. 26, 325-331
Guzman LM, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 177, 4121-4130
Muyrers JP, Zhang Y, Stewart AF. 2000. ET cloning: Think recombination first. In Genetic Engineering (NY), Principles and Methods (Vol. 22) (Setlov, JK, ed.), 77-98
Kolodner R, Hall SD, Luisi-DeLuca C. 1994. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol Microbiol. 11, 23-30
Hashimoto-Gotoh T, Sekiguchi M. 1977. Mutations of temperature sensitivity in R plasmid pSC101. J Bacteriol. 131, 405-412
Waterston RH et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature. 420, 520-562
Yang D, Buchholz F, Huang Z, Goga A, Chen CY, Brodsky FM, Bishop JM. 2002. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci USA. 99, 9942-9947
Yang Y, Sharan SK. 2003. A simple two-step, ´hit and fix´ method to generate subtle mutations in BACs using short denatured PCR fragments. Nucleic Acids Res. 31, e80
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.