The introduction of ICH Q3D (Guideline for Elemental Impurities)1 was an additional safety-based guidance for toxic impurities that complemented the existing ICH Q3C(R5) (Impurities: Guideline for residual solvents)2 and ICH M7(R1) (Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk);3 as well as the existing guidelines for non-toxic impurities (ICH Q3A(R2) (Impurities in new drug substances)4 and non-toxic degradants (ICH Q3B(R2) (Impurities in new drug products).5
ICH Q3D allocated PDE (permitted daily exposure) limits for three routes of delivery, ie, oral, parenteral and pulmonary for 24 common elements. These elements were further classified into four categories:
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
Can’t attend live? No worries – register to receive the recording post-event.
Class I: known human toxicants with limited or no use in pharmaceutical manufacture;
Class IIa: route-dependent human toxicants with relatively high probability of occurrence in the drug product;
Class IIb: route-dependent human toxicants with reduced probability of occurrence that are only of concern if deliberately added, i.e. catalysts and;
Class III: elements with relatively low toxicities by the oral route of administration, PDEs >500μg/day, but which may require consideration for inhalation and parenteral routes.
PDEs are already used for residual solvents2 and are similar to the concept of “acceptable intake” (AI) which is used in mutagenic impurities.3 ICH Q3D1 also utilises the concept of risk assessment. This is used to assess the likelihood of risk arising from the potential presence of elemental impurities. Risk assessment is used for mutagenic impurities.3 The ICH Q3D1 guidance covers human drug products. Animal health products are not per se affected, although a requirement for risk assessment is likely to apply.
Risk assessments
Elemental impurity risk assessment procedures for in formulations6-9 and packaging materials10 typically utilise a process involving (i) identification, (ii) analysis and evaluation and (iii) control strategies. In addition, there are four risk assessment options. Option 1 assumes that the maximum daily dose (MDD) of the product is greater than 10g and further assumes that every component of the formulation contributes. It can be used to test the drug product or individual components. Option 2a assumes that the MDD is <10g and is typically used for individual components. In contrast, option 2b determines the MDD for the drug product and then calculates limits for the components. Finally, option 3 uses the MDD for the drug product and determines limits for the drug product. The risk in turn can then be expressed using four approaches; (i) elemental impurity levels that could exceed the PDE in the drug product, (ii) elemental impurities that could exceed the control threshold (30 percent of PDE) but not the PDE, (iii) elemental impurities that could be present < control thresholds and (iv) elemental impurities excluded form risk assessment (ICH Q3D Table 5.1).11
Pharmacopeias
ICH Q3D1 has also had a significant impact on regional pharmacopoeias. The United States Pharmacopeia (USP) has withdrawn the general chapter on heavy metals (USP <231>),12 with effect from 1 January 2018. This was historically used to monitor potential elemental contamination using a generic, wet chemistry, “lead equivalent” method. USP has introduced two new general chapters on elemental impurities, (i) limits (<232>)13 and (ii) methodology (<233>).14 USP <232> has progressively been updated since its introduction into USP, until it is now aligned with ICH Q3D. Similarly, the European Pharmacopeia (Ph. Eur.) has withdrawn during 2018 its general chapter on heavy metals (2.4.8), with the exception of veterinary products.15 General chapter 5.20 has been replaced by a verbatim copy of the ICH Q3D guideline (supplement 9.3 of the Ph. Eur. 2018) – it was formerly a verbatim copy of EMA’s guideline on the specification limits for residues of metal catalysts or metal reagents, which has now been withdrawn.16 Likewise, general chapter 2.4.20 (Determination of Elemental Impurities) will be updated to cover appropriate methodology for ICH Q3D – it formerly covered only metal catalysts.16 Both USP and Ph. Eur. have indicated that for monographs with established element specific limits, these methodologies and limits will take precedence over ICH Q3D limits. However, it is to be hoped that over time those impacted monographs will be updated to reflect ICH Q3D aligned methodologies and limits.
Implementation guidance
Many agencies have subsequently introduced additional guidance that provided more guidance on the implementation of ICH Q3D.17-19 FDA17 has indicated that risk assessments for legacy products should be submitted as part of the applicant’s Annual Report (even if no changes are proposed). For new products, section P.2 (Pharmaceutical Development) is an appropriate location for risk assessment summaries. The analytical procedures are summarised in USP general chapters <232> and <233>. The EMA18 have indicated that a summary of the risk assessments should be provided in common technical document (CTD) modules 2 and 3. Full copies must be available for inspection at the production site. For legacy products, submission of a risk assessment report is only required if the control strategy needs to be amended. A re-assessment will be required as part of change control and thereafter periodically – to address unplanned changes. Health Canada19 has indicated that a statement of ICH Q3D-compliance needs to be included in every drug product specification from 1 January 2018. It should also be included in CTD module 3.2.P.5.6. – Justification for Specifications. The risk assessment should be adequately documented and available for inspection and any control strategies identified should be implemented. For legacy products, a notification of any ICH Q3D derived changes is required.
Analytical testing
A fundamental part of the risk assessment and control strategies is analytical testing. However, prior knowledge can in some instances be used in lieu of analytical testing. The risk assessment can use information obtained from API or excipient suppliers on typical levels of residual metals in place of testing strategies, or similar information can be obtained from collaborative sources, ie, the Elemental Impurities Excipient Database.20
Sample preparation is an important consideration, particularly volatile elements. The metal must be in solution to be measured by the various analytical methodologies, ie, the sample must be solubilised. For intrinsically soluble materials, water or an organic solvent may be appropriate. However, most drug substances and excipients are insoluble and digestion/incineration in strong acids (often facilitated by microwave irradiation) at elevated temperatures may be necessary to dissolve the sample. Acid digestion is typically performed in closed vessels, to minimise the loss of volatile components, eg, Hg.21 The Ph. Eur. general chapter 2.4.20 also provides a useful decision tree (Figure 2.4.20-1). Analytical testing can be sub-divided into two parts, (i) testing aligned with the initial risk assessment, and (ii) release testing support, which doesn’t necessarily imply specification testing. In the former case method validation may not necessarily be required as the intention is to explore the magnitude of the risk in drug substance, drug product input materials. For release testing support, the key variable is the allowable limits for the methodology. This is typically set at the control limit for the element of interest, ie, 30 percent PDE. In turn these very low ppm limits necessitate ICP-MS (inductively coupled plasma-mass spectroscopy) or ICP-OES (ICP-atomic emission spectroscopy). ICP-MS (procedure 1) and ICP-OES (procedure 2) are fully described in USP general chapter <233>14 and in Ph. Eur. general chapter 2.4.20 and specific chapters 2.2.57 (ICP-OES) and 2.2.58 (ICP-MS). The Ph. Eur. general chapter 2.4.20 also provides a useful decision tree for measurement (Figure 2.4.20‑2). Both pharmacopeias describe the necessary validation that is required. This is specificity, range, accuracy, repeatability, intermediate precision and limit of quantification. However, this assumes that you want to accurately quantify and trend those elemental impurities at 30 percent PDE. Conversely, from a safety perspective all that is required is assurance of absence at 30 percent PDE, ie, control limit, because the PDE in itself constitutes a virtually safe dose (VSD). In those cases and based on the outcome of the risk assessment it may be appropriate to fully validate the methodology for those “deliberately added” elements from class IIb (and III) that are highly likely to be present and develop limit tests for the remaining elements that could be present. A limit test only requires minimum validation as per ICH Q2(R1)22 of specificity and limit of detection (LOD); with the caveat that the LOD is not more than 50 percent of any proposed specification limit. Application of a limit test is appropriate because there are no requirements to trend elemental impurities that are below the control limit. If the applicant can show that the typical levels of a specified impurity are less than the control limit, then these elements do not require to be placed onto the product specification. Elemental impurity levels that are less than the PDE but greater than control limit should be included onto the product specification. Conclusions The principal challenges with ICH Q3D are the documentation of the risk assessment and resulting control strategies in the regulatory submission and how to manage the application of the guidance to existing products, ie, change control considerations.23 In addition, the appropriate validation of test methods still causes confusion.
References
ICH Q3D. Guideline for Elemental Impurities. Current Step 4 version, dated 16 December 2014.
ICH Q3C(R7). Impurities: Guideline for residual solvents. Current Step 4 version, dated 15 October 2018.
ICH M7(R1). Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. Current Step 4 version, dated 31 March 2017.
ICH Q3A(R2). Impurities in new drug substances. Current Step 4 version, dated 25 October 2006.
ICH Q3B(R2). Impurities in new drug products. Current Step 4 version, dated 25 October 2006. Current Step 4 version, dated 2 June 2006.
Prajapati J. 2017. Challenges to conclude elemental impurities risk assessment for pharmaceutical dosage form and submission in regulatory dossier. J. Gen. Med., 13(3), DOI: 10.1177/1741134317699244.
Jenke D, Stults C, Paskiet D, Ball D, Nagao L. 2015. Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review. PDA J.Pharm. Sci. Technol., 69(1), 1+48.
Rockstroh H. 2018. ICHQ3D Implementation Current State: Use of published data for risk assessments, Joint Pharmaceutical Analysis Symposium, Regulatory Hot Topics III, 06 December 2018 at Royal Society of Chemistry, London.
FDA, 2018. Elemental Impurities in Drug Products. Guidance for Industry. August 2018.
EMA, 2016. ICH guideline Q3D on elemental impurities, Step 5. July 2016. EMA/CHMP/ICH/353369/2013.
Health Canada, 2016. Adoption of International Conference on Harmonisation of Technical Requirements for the Registration of Pharmaceuticals for Human Use (ICH) Guidance Document: Q3D: Guideline for Elemental Impurities. 16-100030-245. January 2016.
Boetzel R, Ceszlak A, Day C, Drumm P, et al. An Elemental Impurities Excipient Database: A. Viable Tool for ICH Q3D Drug Product Risk Assessment. J. Pharm. Sci., 107(9), 2335-2340.
ICH Q2(R1), 2005. Validation of Analytical Procedures: Text and Methodology. Current Step 4 version. Parent Guideline dated 27 October 1994. (Complementary Guideline on Methodology dated 6 November 1996 incorporated in November 2005).
Teasdale A. ICH Q3D Elemental Impurities – post finalisation reflection, Joint Pharmaceutical Analysis Group meeting on Regulatory Hot Topics II at Royal Society of Chemistry, London, 01 December 2017.
Biography
DAVE ELDER has nearly 40 years of service within the pharmaceutical industry at Sterling, Syntext and GlaxoSmithKline. He is now an independent GMC consultant. Dr Elder is a visiting professor at King’s College, London, and is a member of the British Pharmacopoeia. He is a member of the Joint Pharmaceutical Analysis Group (JPAG) and the Analytical Division Council of the Royal Society of Chemistry.
Acknowledgement
The author thanks Ashley Taylor, Catalent, for useful discussions and input.
The rest of this content is restricted - login or subscribe free to access
Thank you for visiting our website. To access this content in full you'll need to login. It's completely free to subscribe, and in less than a minute you can continue reading. If you've already subscribed, great - just login.
Why subscribe? Join our growing community of thousands of industry professionals and gain access to:
bi-monthly issues in print and/or digital format
case studies, whitepapers, webinars and industry-leading content
breaking news and features
our extensive online archive of thousands of articles and years of past issues
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.
Nice Information Sir, but I have a question,
1. Still some of the companies are performing the heavy metal test is it valid?
2. Can we use CTD or e-CTD or both can be used?
Its very good article , very useful,
Thanks for the update !