There are many business challenges to developing a biologics drug, one of which is effective data management. In this article, Unjulie Bhanot focuses on efficient data management policies and systems, and how they could improve biologics product development processes.
Biologics therapies, in the form of monoclonal antibodies and recombinant proteins, have proven success in the medical market with six out of the global top 10 treatments taking this form in 2017.1 However, the development journey of a biologics drug to its final destination in the market can take up to 12 years;2 a journey that always comes with its own scientific, operational and technological challenges. Biopharma organisations are also under pressure to reassess their development strategies; factors such as the rise in scientific advances and changing therapeutic requirements are amplifying this pressure. Such organisations must ensure they benefit from the latest scientific and process innovations to shorten their time to market and release relevant and targeted molecules – all while adhering to the growing list of regulatory and compliance requirements and government policy reforms.
Players in the space must also compete with the shift of drug development to growing markets, such as India and China, and their ability to support lower value markets. Consequently, these large biopharma organisations are looking to partner with technology firms to leverage their talent to support the digital therapeutic market. Examples include the partnering of Pfizer and IBM to deliver technology that performs real-time monitoring of the symptoms of Parkinson’s,3 UCB and MC10 creating sensors that monitor key parameters to develop therapies for neurological disorders,4 as well as Biogen and Verily (Google’s life sciences arm) using sensors and software to study the biological and environmental factors contributing to multiple sclerosis.3In-vitro companion devices are also being implemented in combination with drug development, to gauge which patient cohort will most likely benefit from the therapeutic biological product in development and identify those patients most likely to be at increased risk of non-beneficial side effects.5 By using these technologies in tandem, organisations can target the right therapeutic areas and make decisions early on about whether to develop a molecule for a specific disease.
Tackling the business challenges
Owing to this combination of factors, organisations rely on four key areas to help support the development of a drug and overcome the business’s challenges:
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
Business-driven compliance policies and procedures.
In the lab, these tools are tied together by the thread of data and information – such as performing scientific data analysis to understand the impact of a given instrument; using information from personnel training to plan experiments; or managing sample transfers based on release data.
Figure 1: Activities a scientist may encounter in which data is either created, utilised, manipulated or managed
Furthermore, organisations require both top-level and detailed views of their data to make informed decisions about the correct biological formation and purity of the drug, its efficacy and potency, and the impact of supplementary conduits and processes. Organisations also need an overall view of the development strategy and its success. For data to become consumable information, context is critical. The ability to piece together that context, determine what data should be used before extracting relevant data, and compile/aggregate the pertinent data is critical. This requires efficient data management policies and systems. Figure 1 depicts daily activities that scientists may encounter, in which data is either created, utilised, manipulated or managed, with most emphasis given to the scientist’s key role of executing the science.
Current data management in labs
Inept management of any of these tasks has consequences for the business – be they only small oversights that are immediately remediable. Whether the gap takes five minutes to close or a few hours, it’s important to acknowledge that the impact extends to the overall business and could cause incremental damage. Imagine a scenario where an instrument fails its calibration, but this data point is not recorded. Many people then use the instrument and their experiments fail; the mistake only being caught several experiments down the line and perhaps only linked to the instrument after much work has been reviewed. In this scenario, time has been lost, rework has been triggered and may also have exhausted reagent stock, project timelines are delayed and it could cause a compliance failure where experimental results have been used in GMP. In an everyday scenario, the combination of these activities generates lots of data that is acquired or recorded, processed and analysed, stored and then disseminated. To follow the path of this data, and understand the relationship between the data points, scientists must assimilate process data with parameter data, together with experimental results. While evidencing the science performed, scientists may also be expected to duplicate the same metadata across different systems.
Additionally, with the deployment of instrumentation of the modern-day lab, such as high-throughput systems (HTS) or process analytical technology (PAT) tools, scientists are required to be proficient in drawing information from the reams of data these systems can yield.6 To achieve this, they must master the skills needed to decide which sets of data are most relevant, provide the most insight, and should be moved forward for analysis and report compilation. Many R&D organisations are making the investment to ensure they either hire or train personnel to be confident analysing large volumes of data.7
Take a reasonably common example in screening analysis: each well in a 96-well plate may generate an image of 2MB (~200MB per plate), extend this across five time points and suddenly the volume of data jumps to 1GB. Now extrapolate this across 100 plates, across five time points, and 100GB of data from a single experiment can become difficult to manage. The scientist may also need to determine whether to analyse all wells across all timepoints across all plates. There may also be some numerical calculations associated with these wells (absorbance values, concentrations, etc), what’s their format? Can this information be extracted and consumed? Most importantly, are we able to reconcile the image with its corresponding numerical data, with the context of knowing what was in the given well on the defined plate? We can start to see how unmanageable the volume of data can be; and this does not even address the storage challenge.
Designing an effective data management strategy
An ideal solution need not be a complicated one; however, it should be purposeful, and its role and position should be fully defined. The strategy designed should serve both the scientists and the overall organisation.
It is here where seamlessly integrated systems hold most value – by creating and understanding the full laboratory and organisation landscape of all the moving parts, dependencies, human interventions and, most importantly, data collection and handoff points. Software can be strategically utilised to facilitate smoother data transaction, thus reducing the burden on the scientist while maintaining data integrity. Systems that permit data to be recorded vicariously as part of performing a procedure and do not need manual duplication, will be the least burdensome on scientists. This will allow them to focus on their core work and for organisations to make an impact on both their returns and main business goals.
Equally, systems that can communicate with one another without requiring human mediation and can streamline data transfers, will enhance reliability of the data in question. When creating the ‘landscape of the lab’, organisations should map out the journey of the data. What purpose does it serve, what question is it trying to answer, who needs to consume the data, and, inevitably, is the quality of the data sufficient to validate the journey of the biologic through its development? Businesses may wish to consolidate business metrics with the reporting of scientific outcomes; for example, what was the duration of a particular stage of work, and was there an impact on its success or failure corresponding to the resources available? Ultimately, organisations aim to deliver novel, high-quality therapeutics to patients faster and more cost effectively. Therefore, it is critical to understand the collective workforce (personnel and instrumentation) that contributes to this pursuit.
Considering our assessment of a day in the life of a scientist (Figure 1), it is clear to see the impact an integrated platform that allows data to be recorded in a consistent, structured manner and connects different factions of the workflow could have. Put simply, organisations would be better supported in the current competitive R&D landscape with their endeavour to bring their biologic to patients faster, with a system that could accurately calculate the length of time an experiment will take when scheduling work, or could track and store sample metadata in tasks managing sample testing.
What about a system that could manage the compliant use of instruments as well as their output? Or one that could ensure that the activities performed to support compliance could be an automatic outcome of users entering data in their experiments? Even with these few examples, it is easy to see how the deployment of an enterprise-ready platform, specifically designed to support the biologics data workflow, could form the core of an effective data management strategy, empower businesses to make better decisions with improved product and process insight, shrink reporting timelines and expedite seamless data dissemination.
Biography
Unjulie Bhanot is a UK-based Solutions Consultant at IDBS and has worked in the biologics R&D informatics space for over five years. Unjulie holds a BSc in Biochemistry and an MSc in Immunology, both from Imperial College London. Since joining IDBS in 2016, Unjulie has been responsible for designing and deploying informatics solutions for biologics-based organisations within Europe. In 2017, she took on a leading role in the development of the IDBS bioprocess solution. Prior to joining IDBS, Unjulie worked as an R&D scientist at both Lonza Biologics and UCB, and later went on to manage the deployment of the IDBS E-WorkBook Platform within the analytical services department at Lonza Biologics in the UK.
References
1. industry statistics, Hardmann & Co, 11 April 2018 https://www.hardmanandco.com/wp-content/uploads/2018/09/global-pharmaceuticals-2017-industry-stats-april-2018-1.pdf
2. Drug development: the journey of a medicine from lab to shelf – The Pharmaceutical Journal, 12 May 2015, Ingrid Torejesen https://www.pharmaceutical-journal.com/publications/tomorrows-pharmacist/drug-development-the-journey-of-a-medicine-from-lab-to-shelf/20068196.article?firstPass=false
3. Wearables: A World of Pharma Partnership And Potential – Pharma Intelligence, 07 June 2017, Melanie Senior https://pharmaintelligence.informa.com/resources/product-content/a-world-of-pharma-partnership-and-potential
4. Press Release from MC10: MC10 and UCB Complete Landmark Collaboration Involving Parkinson’s, January 05, 2017 https://www.mc10inc.com/press-media/mc10-ucb-landmark-home-monitoring-collaboration
5. In Vitro Diagnostics – Companion Diagnostics, U.S. Food and Drug Administration, July 2018 https://www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm407297.htm
6. Advanced Biopharmaceutical Manufacturing: An Evolution Underway – Deloitte, May 2015 https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/advanced-biopharmaceutical-manufacturing-paper.html
7. 7 Data Challenges in the Life Sciences – Technology Networks, 02 May 2017, Jack Rudd https://www.technologynetworks.com/informatics/lists/7-data-challenges-in-the-life-sciences-288265
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.