Detection of microorganisms using cellular component-based rapid method technologies
5
SHARES
Posted: 20 June 2011 |
This is the third in a series of articles on rapid microbiological methods that will appear in European Pharmaceutical Review during 2011. In my last article, I provided an overview of viability-based rapid microbiological methods (RMMs), such as flow and solid-phase cytometry. In this article, we will review some of the currently available RMMs that fall under the category of cellular-component based technologies. These RMMs rely on the analysis of cellular markers or the use of probes that are specific for microbial target sites of interest. Examples include ATP bioluminescence, the detection of endotoxin and the use of MALDI-TOF mass spectrometry for microbial identification.
ATP bioluminescence is the generation of light by a biological process, and is most recognised in the tails of the American firefly Photinus pyralis. First discovered in 1947 by William McElroy, he described the ATP bioluminescence reaction in which ATP (Adenosine Triphosphate) is enzymatically consumed to produce light.
This is the third in a series of articles on rapid microbiological methods that will appear in European Pharmaceutical Review during 2011. In my last article, I provided an overview of viability-based rapid microbiological methods (RMMs), such as flow and solid-phase cytometry. In this article, we will review some of the currently available RMMs that fall under the category of cellular-component based technologies. These RMMs rely on the analysis of cellular markers or the use of probes that are specific for microbial target sites of interest. Examples include ATP bioluminescence, the detection of endotoxin and the use of MALDI-TOF mass spectrometry for microbial identification.
ATP bioluminescence is the generation of light by a biological process, and is most recognised in the tails of the American firefly Photinus pyralis. First discovered in 1947 by William McElroy, he described the ATP bioluminescence reaction in which ATP (Adenosine Triphosphate) is enzymatically consumed to produce light. Specifically, in the presence of the substrate luciferin, the enzyme luciferase will use the energy from ATP to oxidise luciferin and release photons. The photons can then be detected and measured by a luminometer equipped with a photomultiplier tube.
Because all living cells store energy in the form of ATP, this cellular component can be used as a measure of organism viability. Basically, we can capture the microorganisms of interest, release the ATP from within these cells, add the luciferin and luciferase reagents and measure the amount of bioluminescence generated. The sensitivity for ATP bioluminescence (i.e., how many cells are required to detect a sufficient amount of photons or light) is between 100-1000 bacterial cells and a single yeast/mould cell. For this reason, when low numbers of bacterial cells are expected in a test sample, an enrichment step in media may be required to allow these cells to multiply and produce a sufficient level ATP for subsequent detection.
Are you looking to explore how lipid formulations in softgels can enhance drug absorption and bioavailability. Register for our upcoming webinar to find out!
3 September 2025 | 3:00 PM BST | FREE Webinar
This webinar will delve into the different types of lipid formulations, such as solutions, suspensions, emulsions, and self-(micro)emulsifying systems. Applications span diverse therapeutic areas including HIV therapy, oncology, immunosuppressants, and emerging treatments like medicinal cannabis (eg, CBD).
What You’ll Learn:
Lipid formulation development and screening tools for optimisation
Key steps in scale-up and industrialisation to ensure consistency and efficiency
Impact of lipid-based softgels on drug delivery and patient outcomes.
A number of ATP bioluminescence systems are currently in use within our industry. Many will provide data in terms of a relative light unit (RLU), which can be correlated with viable cell concentration. In this regard, these systems are primarily used for estimating the cell count based on the specific amount of light that is detected, or for presence/absence testing. The latter can be accomplished by under – standing what the lower level of detection is (in terms of RLUs), and if the results are below the level of detection, then no viable organisms are present. This is the basis for the manner in which GSK uses ATP bioluminescence for the early release of a non-sterile prescription nasal spray (i.e., up to four days earlier release than conventional methods).
Another RMM utilises a more direct enumeration approach by using a membrane filtration technique that employs a hydrophilic filter containing more than 600 compartments separated by hydrophobic partitions. The test sample is filtered through this membrane and individual cells are captured within these compartments. The filter is then transferred onto a suitable agar medium, and the single cells will form microcolonies during a short incubation period. The filter is subsequently treated with an ATP-releasing agent, and the same luciferin and luciferase reagents as described above, and then a special luminometer is used to intensify the bioluminescence from each microcolony. The bioluminescence signals are then quantified, and a cell count (i.e., the number of micro – colonies arising from a single cell) is provided.
ATP bioluminescence is limited by the fact that an organism can contain only a finite amount of ATP (e.g., an average bacterial cell contains 1 attomole of ATP). For this reason, one RMM supplier developed a novel method to amplify the amount of ATP generated in a cell. All living microorganisms contain adenylate kinase (AK), another vital part of energy metabolism. Because AK is an enzyme, rather than a metabolite, it is possible to use AK to generate almost unlimited amounts of its products, including ATP. For example, AK catalyses the linear amplification of ADP to high levels of ATP. Therefore, if we extract both ATP and AK from a cell, add ADP, luciferin and luciferase, the resulting reaction can produce a 1000-fold increase in ATP, which is detected by the supplier’s luminometer.
Today, many companies have employed the use of ATP bioluminescence for presence / absence testing, bioburden estimations, hygiene monitoring and most recently, finished product sterility testing.
Endotoxin testing
Today, the most widely used methods for endotoxin detection employ Limulus Amebocyte Lysate (LAL), which is isolated from the blood of the horseshoe crab (Limulus polyphemus). Many laboratories utilise bench-top instruments for this type of testing, which require samples to be transferred from the manufacturing floor or other locations to the laboratory. Recent advances in endotoxin instrumentation now allow for testing to be performed at the point-of-use or point-of-sampling, with results in as early as 15 minutes. One such LAL-based technology uses a disposable cartridge and hand-held incubating spectrophotometer to allow for a quantitative, kinetic chromogenic method by measuring the colour intensity directly related to the endotoxin concentration in a test sample. Each cartridge contains LAL reagent, chromogenic substrate and control standard endotoxin. The sensitivity of this RMM is 0.01-1.0 and 0.05-5.0 EU per mL, and is FDA-approved as an alternative to traditional LAL testing methods for final product release. Many companies are now using this technology for testing pharmaceutical grade water systems (at the point-of-use), raw materials, in-process samples and finished products.
Fatty acid analysis
The cellular membrane contains lipid biopolymers, and we can utilise fatty acid profiles to provide a fingerprint for micro – organism identification. One available RMM uses gas chromatography (GC) to analyse fatty acids that have been extracted from microorganisms after a pure culture has been obtained. After a series of relatively simple chemical conversions, methylation reactions and washing steps, the purified fatty acids are analysed in a GC, and the resulting data peaks are compared with an internal database of fatty acid peaks obtained from processing known microorganisms through the system. If a match is found, the microbial identity of the microorganism is provided.
MALDI-TOF Mass Spectrometry
Matrix Assisted Laser Desorption Ionisation – Time of Flight (MALDI-TOF) mass spectrometry can provide an accurate molecular weight measurement and characterisation of biomolecules, including proteins, peptides, polysaccharides and nucleic acids. Therefore, it is possible to use MALDI-TOF to generate a mass spectrum from microorganisms that can be used for microbial identification. Basically, a biomolecule (or intact microbial cell) is combined with a UV-absorbing matrix on a stainless steel plate (usually the size of a small microtitre plate), and then a laser ionises the resulting mixture. The matrix absorbs the energy from the laser, preventing unwanted fragmentation of the biomolecule. The ionised particles are then accelerated in an electric field and enter what is known as the flight tube. Within the flight tube, different molecules are separated according to their mass to charge ratio, and as a result, they reach the mass spectrometry detector at different times (e.g. lighter ions will reach the detector faster than heavier ions). Within a few seconds, a mass spectrum is generated, and this spectrum is then compared with an internal database containing similar spectra from known microorganisms. MALDI-TOF RMMs are now available for this purpose, and the user will normally use a pure culture as the starting material (~ 105 viable cells are required for an accurate measurement). A portion of an isolated colony is smeared onto the target plate and allowed to co-crystallise with the UV-absorbing matrix. After drying, the target plate is placed into the mass spectrometer, and exposed to the laser. Ionised proteins and peptides are arranged in a spectrum with increasing mass, and the resulting mass spectra are compared with the internal database.
SELDI-TOF Mass Spectrometry
Surface Enhanced Laser Desorption Ionisation – Time of Flight (SELDI-TOF) mass spectrometry is similar to MALDI-TOF, except that the system currently in use employs a chip array technology that contains either a chemical (e.g., ionic, hydrophobic, hydrophilic) or biochemical (e.g., antibody, receptor, DNA) surface designed to capture specific proteins of interest. This enables direct profiling of proteins from complex biological samples, bypassing the complicated steps of purification. MALDI-TOF MS of the bound protein molecules is subsequently performed. This type of RMM is routinely used for protein profiling in drug discovery and disease diagnostics; however, we may see similar systems introduced for routine microbial identification in the future.
Fourier Transform-Infrared (FT-IR) Spectrometry
Another cellular-component based RMM utilises Fourier transform-infrared spectrometry, or FT-IR. This type of spectrometry has been successfully used in pharmaceutical manufacturing and quality control to provide positive fingerprint identification of materials. Each molecule’s functional group within a particular material under analysis can absorb infrared radiation to generate a characteristic absorption or transmission spectrum. FT-IR can also generate spectra from microorganisms without the need for extraction, amplification, labelling or staining of any kind. Cellular material from a pure culture is spread onto a microplate and dried at 40 – 45°C under vacuum to create a biofilm. The dried biofilm is then analysed in the FT-IR spectrometer. Each cell’s FT-IR spectra reflects its biochemical composition, including proteins, lipids, DNA and RNA, and carbo – hydrates. This spectral fingerprint can then be compared with other spectra within a previously generated database, and if a match if found, an identification is provided.
Summary
Cellular component-based rapid micro – biological methods have been used for a wide range of applications, including the detection, enumeration and identification of microorganisms. Furthermore, a number of different technologies are currently available that are based on a variety of distinctive scientific principles. It is up to the end-user to determine the right technology for the intended application, as each system can differ in their level of detection, specificity, throughput, compatibility with sample types, ease of use, and cost. I discuss many of these validation and implementation considerations on my website, http://rapidmicromethods.com, and I encourage you to visit for additional infor mation and guidance.
Join me for the next article in this series, where we will discuss the use of other types of spectroscopic-based RMMs, such as light scattering technologies, for microbial detection, identification and real-time environmental monitoring.
About the Author
Dr. Michael J. Miller is an internationally recognised microbiologist and subject matter expert in pharmaceutical microbiology and the design, validation and implementation of rapid microbiological methods. He is currently the President of Microbiology Consultants, LLC (http://microbiologyconsultants.com). For more than 22 years, he has held numerous R&D, manufacturing, quality, and consulting and business development leadership roles at Johnson & Johnson, Eli Lilly and Company, Bausch & Lomb, and Pharmaceutical Systems, Inc. In his current role, Dr. Miller consults with multinational companies in providing technical, quality and regulatory solutions for pharmaceutical manufacturing, contamination control and microbiological PAT. He also provides comprehensive training for his clients in the areas of rapid method validation and implementation.
Dr. Miller has authored over 100 technical publications and presentations in the areas of rapid microbiological methods, PAT, ophthalmics, disinfection and sterilisation, is the editor of PDA’s Encyclopedia of Rapid Microbiological Methods, and is the owner of http://rapidmicromethods.com, a website dedicated to the advancement of rapid methods. He currently serves on a number of PDA’s program and publication committees and advisory boards, is co-chairing the revision of PDA Technical Report #33: Evaluation, Validation and Implementation of New Microbiological Testing Methods, and routinely provides RMM training programs for the industry and professional organisations worldwide.
Dr. Miller holds a Ph.D. in Microbiology and Biochemistry from Georgia State University (GSU), a B.A. in Anthropology and Sociology from Hobart College, and is currently an adjunct professor at GSU. He was appointed the John Henry Hobart Fellow in Residence for Ethics and Social Justice, awarded PDA’s Distinguished Service Award and was named Microbiologist of the Year by the Institute of Validation Technology (IVT).
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.