Cancer treatment faces a conundrum: a growing lack of therapeutics with lasting effects. The low hanging fruit of the medicinal chemistry orchard seems to have been picked, and modification of existing anti-cancer therapeutics has produced only incremental rewards[1]. Thus, both pharmaceutical companies and academic researchers are left searching for new strategies that will yield novel, long-lasting therapies and methods to rationally utilise existing therapies, alone and in combination, to individualise treatment regimens. The search for novel anti-cancer therapeutics or novel uses for existing drugs can benefit from the maturity of pharmacogenomics to extract genomic information for identification of new targets and therapeutic strategies.
Pharmacogenomic strategies interrogate the genome using low-throughput and high throughput platforms that generate quantifiable information from cells or tissues reflecting gene expression, protein expression, epigenetic changes or mutation / polymorphism status that correlate with therapeutic response. Herein, I will highlight the possibilities and challenges of utilising gene expression signatures as a tool to discover novel, anti-cancer agents and to optimise therapeutic regimens.
This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.
Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.
What you’ll discover:
Key trends shaping the pharmaceutical formulation sector
Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
Can’t attend live? No worries – register to receive the recording post-event.
Gene expression information can be captured using high-density DNA microarrays and RNA sequencing (RNA-seq) technologies, each capable of nearly whole genome coverage. RNA-seq has an advantage over DNA micro arrays because this technology measures splice variants and provides unmatched base resolution that can link mutation status to gene expression levels[2]. With either platform, the scientist can amass catalogues of gene expression data from cell culture or animal models and human tumour samples. However, utilisation of gene expression levels requires sampling of target tissue, so most cancers are tractable for using gene expression analysis as a drug discovery and development tool (Figure 1).
Application of gene expression analysis in drug discovery: Finding novel targets
It is estimated that the human genome encodes several thousand ‘druggable’ genes. However, depending on the tumour / tissue type, the landscape of druggable genes may vary. Candidate therapeutic targets must be highly expressed and differentially-expressed in tumour tissue. Collection of gene expression data, followed by bioinformatic assessment of differentially-expressed genes, can initiate identification of new therapeutic targets followed by validation of potential candidates.
Expression signatures of messenger RNA (mRNA) and microRNA (miRNA) genes characterise normal cells or tissues from diseased counterparts. Sorting of the gene expression signatures that differentiate normal from diseased cells or tissues will identify mRNA, or protein-coding genes, highly expressed in diseased tissue. These represent candidates as novel targets for therapy. Using systems biology methods, candidates are sorted for genes expected to code for proteins having enzymatic activity or functioning as membrane-bound receptors or ion channels with the expectation that these proteins will be highly-expressed and accessible for pharmacological disruption.
Dysregulation of miRNA genes in diseased cells or tissue can also lead to new targets. miRNA hybridise to specific mRNA to control expression of the mRNA. Interrogation of target genes of miRNA genes over-expressed in diseased cells might indicate miRNA that are oncogenes or tumour suppressors. Oncogenic miRNA may be directly disrupted in tumour cells for therapeutic benefit.
A second approach to novel target discovery using the gene expression information from tumour cells or tissues exploits the complexity of the expression signatures, sometimes termed expression networks, rather than interrogating the expression levels on a gene-by-gene basis. Functional overlapping of biological networks is understood to allow cancer cells to thrive in the face of single gene / protein disruption. For example, non-small cell lung cancers with specific mutations in the epidermal growth factor receptor (EGFR) might initially respond to small molecule inhibitors of EGFR. Unfortunately, most of these patients progress due to the survival of tumour cells with compensatory mutations[3-5]. Deconstruction of expression signatures that characterise a disease phenotype, such as resistance to therapy, can be carried out using systems biology tools like DAVID and Ingenuity Pathway Analysis[6,7]. These tools help the experimentalist infer the biological function(s) of the signature genes and organise the signature genes into networks of activity. Like any network, from flight patterns of commercial aircraft to electrical systems, these expression networks contain ‘hub(s) of activity’. For drug discovery strategies, these hubs, whether signature genes or not, might represent novel drug targets.
‘Drug discovering’ strategies using expression data were benchmarked in bacterial and yeast systems to identify molecular interactions, and subsequently, targets of specific compounds. A nine-gene expression signature, derived from analysis of steady-state transcriptional levels of SOS repair pathway mutants, was used by Gardner and colleagues to identify mitomycin C targets in E. coli. The nine gene signature was compared with signatures that characterised mitomycin C-treated E. coli to uncover targets of drug activity[8]. Similarly, several research groups have used mRNA expression information to develop a catalogue of expression patterns corresponding to either mutation or pharmacological disruption of specific proteins in S. cerevisae with the goal of using gene expression data to understand the specificity of therapeutic compounds[9,10]. In practice, methods to overlay chemical and genetic signatures must first find matches and second, infer mechanism of action and potentially the target of the new compound. These experimental examples were forerunners of systematic approaches to identify the mechanism of action and target of novel agents based on gene expression signatures in humans.
Developing a catalogue of chemical genetic lesion gene expression signatures in prokaryotes and lower eukaryotes is relatively easy due to genome size and comparative absence of functionally-compensating genes. Identification of a chemical-genetic expression interaction catalogue in humans is more challenging because tissue-specific or cell-specific gene expression must be considered. Expression signatures characterising genetic lesions can be derived from cells treated with interfering RNA to elicit individual gene disruption or from diseased patient samples for which genetic mutation status is known. Steady state expression profiles are generated after compound treatment as described above and anchored to an experimental surrogate for a desired clinical phenotype, such as inhibition of cell proliferation. The resulting chemical-genetic expression profiles are overlaid.
The Golub group tested the chemical genetic interaction methodology on human cells by collecting gene expression data following chemical perturbation using high throughput screening (GE-HTS) of compounds with uncharacterised targets. Gene expression signatures of desired biological states of human cells were generated. For instance, a potential treatment for leukaemia was hypothesised as one that could induce differentiation of the leukemic cells. Gene expression signatures of differentiated blood cells were overlaid on expression signatures of leukaemia cells treated with a library of novel entities and monitored for differentiated phenotypes in vitro. This methodology provided data that linked activities of several compounds using the chemical-genetic interactions[11]. Similarly, Antipova and colleagues searched for inhibitors of platelet derived growth factor receptor (PDGFR) signalling in neuroblastoma cell lines. To mimic the desired phenotype of an inhibitor of PDGFR, cells were first treated with PDGF and subsequently treated with an inhibitor of MAPK signalling. A library of uncharacterised com – pounds was screened to identify entities that elicited a similar gene expression phenotype as an MAPK inhibitor, and two emerged with the desired properties[12].
The drug discovery efforts described above used a small set of signature genes for query. If a computationally manageable signature is not attainable or if complexity is desired to capture the biological system, how can the experimentalist manage these signatures to identify mechanism of action or targets of novel entities? As previously discussed, modelling of gene expression networks can lead to novel drug targets. Lamb and colleagues analysed gene expression data characterising individual genetic lesions, disease phenotypes, and response to small molecule insult with both supervised and unsupervised computational approaches to develop a ‘pattern matching’ algorithm[13]. The Connectivity Map (CMap) emerged and was used to generate a searchable database linking hundreds of expression profiles of small-molecule drug activities to outcome phenotypes. CMap was used to find inhibitors of androgen sensitive prostate cancers and identified small molecules that inhibit HSP90[14]. The Connectivity Map has also identified lead targets (HDAC, PI3K and others) for lung and breast cancer therapy that have been subsequently externally validated[15].
Gene expression signatures can also include non-coding RNAs. For example, miRNA expression signatures can indicate miRNA species that may be directly targeted or may function as novel therapeutic agents themselves. Signatures of miRNA expression that characterise drug treatment or a cellular state contain an additional layer of complexity because miRNA can target multiple mRNAs. Thus, multiple proteins may be affected by a single miRNA, depending on the cell or tissue type. Web-based algorithms (e.g. miRDB and TargetScan) can predict the probability that a specific miRNA will target specific mRNA and also demonstrate the spectrum of mRNAs targeted. The networks of cellular activity specified by an miRNA expression signature can also be utilised to identify hubs, either proteins or miRNAs, which might be novel targets of therapy.
Figure 1: Drug discovery and development applications for differential gene expression signatures using experimental model systems or patient tumour samples. Expression signatures can be annotated to identify druggable targets or predictive models of response can be mathematically derived. Gene expression data can, in some cases, be utilised for both purposes from the same sample material
Identifying biomarkers of response and toxicity
Development of new drugs is one way of increasing the clinical stockpile of therapeutics, but rational and individualised use of existing drugs or drug combinations may also improve the clinical problem. I will explore the use of gene expression signatures as biomarkers of toxicity and response as a means for directing new and existing therapies through trials and into clinical use. Perhaps the real hurdle of drug discovery will be successful development of effective drug therapies that only show benefit in a minority of patients.
Developing new anti-cancer agents that demonstrate pre-clinical promise frequently derails in clinical trials for a host of reasons: 1) adverse events and toxicities that are too extensive to allow therapeutic success, such as cardiotoxicities, 2) low numbers of responders, in cases with EGFR inhibition in colorectal cancers, or 3) insignificant improvement over placebo or standard-of-care[16-19]. Individualisation of approved agent(s) and identification of rational combination(s) of anti-cancer agents can be achieved using gene expression information in conjunction with means for matching to activities of specific compounds, such as CMap. Strategies such as these may improve response to a drug by selecting responsive populations. As an example, our work and that of others has shown that identification of gene signatures that predict whether an individual is likely to respond to a given therapy can successfully stratify patients to an appropriate therapeutic regimen[20-22]. Using gene expression signatures identified in our lab that predict response to EGFR inhibition in lung cancers, we also asked whether the signature suggested additional signalling pathways that may be targeted in specific patients. Annotation of the signature for biological functions revealed that combination of EGFR and MEK inhibitors might benefit additional patients that individually demonstrated either low response or unacceptable toxicities to one of the drugs[20,23,24]. Thus, predictive signatures are also descriptive in that they may uncover activities that might be therapeutically targeted in combination (Figure 1 on page 10).
Finally, it should also be possible to develop gene expression signatures predictive of toxicities to anti-cancer agents. Existing pharmacogenetic biomarkers of toxicity, polymorphisms in drug metabolising enzymes that correlate with toxicity to specific therapies, have been clinically utilised with some success[25]. To develop a compendium of gene expression data from patient tumours that characterise toxicities, tumour sampling followed by gene expression analysis can and should be built into clinical trials. Signatures can be identified that characterise unacceptable toxicities in the same way as signatures of response. Thus, using a single platform for collecting gene expression data, signatures of toxicity and response can accompany drugs through later trials to quicken the pace of drug development.
Concluding remarks
Discovery of novel anti-cancer agents and development of individualised anti-cancer therapies are uniquely positioned to use gene expression data as a tool for identification of new drug targets and new uses for existing cancer therapies. Like most advances in science and medicine, risk is always part of the equation. Gene expression analysis requires sampling of diseased tissue, and tissue from liquid or solid tumours is often more readily available than normal tissue or from other disease states. However, collection of tumour tissue is not without some risk to the patient. The risk may be balanced by the valuable expression data acquired from these samples that may lead to new therapeutic regimens, new uses of old therapies, new targets for chemical entities, and new molecular markers for response and toxicity.
Lastly, new technologies, such as RNA-seq, not only allow for measurement of gene expression but also provide pharmacogenetic assessment of mutation status in coding regions of genes. In some cases, a single assay may then be used to merge multiple genomic inputs to develop new therapies and new biomarkers for a novel therapy. The end objective is to maximise the safety profile of drugs and individualise the therapeutic regimens to improve response profiles and limit adverse events in patients.
References
D. Cressey. Traditional drug-discovery model ripe for reform. Nature. 2011. 471: 17-18
Oshlack, A., Robinson, M.D., and M.D. Young. From RNA-seq reads to differential gene expression results. Genome Biol. 2010. 11(12): 220
Kobayashi, S. et al., EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005. 352(8): 786-92
Engelman, J.A., et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007. 316(5827):1039-43
Pao, W., et al., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005. 2(3): e73
Huang, D.W., Sherman, B.T., and R.A Lempicki. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc. 2009. 491):44-57
Gardner, T.S., et al., Inferring genetic networks and identifying compound mode of action via expression profiling. Science. 2003. 301(5629):102-105
Marton, M.J. et al., Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat. Med. 1998. 4(11):1293-301
Parsons, A.B., et al., Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2004. 22(1):62-69
Stegmaier, K., et al. Gene expression-based highthroughput screening (GE-HTS) and application to leukemia differentiation. Nat Genetics. 2004. 36(3): 257-263
Antipova, A.A., Stockwell, B.R. and T.R. Golub. Gene expression-based screening for inhibitors of PDGFR signaling. Genome Biology. 2008. 9:R47
Lamb, J., et al. The Connectivity Map: Using Gene-expression signatures to connect small molecules, genes, and disease. Science. 2006. 313(5795):1929-1935
Hieronymus, H., et al. Gene expression signaturebased chemical genomics signature identifies a novel class of HSP90 pathway modulators. Cancer Cell. 2006. 10:321-330
Qu, X.A. and D.K. Rajpal. Applications of Connectivity Map in drug discovery and development. Drug Discov Today. 2012. In press
Fojo, T. and D.R. Parkinson, Biologically targeted cancer therapy and marginal benefits: are we making too much of too little of are we achieving too little by giving too much. Clin Cancer Res. 2010.16(24):5972-80
J. Arrowsmith. Trial watch: Phase II failures: 2008-2010. Nat Rev Drug Disc. 2011. 10: 328-329
Eschenhagen, T., et al., Cardiovascular side effects of cancer therapies” a position statement from the Heart Failure Association of the European Society of Cardiology. 2011. 13(1): 1-10
Cunningham, D., et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004. 351(4): 337-45
Balko, J.M., et al. Gene expression signatures that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and lung tumors. BMC Genomics. 2006. 7:289
Ferriss, J.S., et al., Multi-gene expression predictors of single-drug responses to adjuvant chemotherapy in ovarian carcinoma: predicting platinum resistance. PLoS One. 2012. 7(2):e30550
Kadra, G., Gene expression profiling of breast tumor cell lines to predict therapeutic response to microtubule-stabilising agents. Breast Cancer Res Treat. 2012. 132(3):1035-47
Balko, J.M., et al. Combined MEK and EGFR inhibition demonstrates synergistic activity in EGFR-dependent NSCLC. Cancer Biol Ther. 2009. 8(6): 522-530
Haura, E.B., et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010. 16(8): 2450-7
Feng, X., et al. Pharmacogenomic biomarkers for toxicities associated with chemotherapy. US Pharm. 2012. 37(1)(oncology supplement): 2-7
Biography
Esther P. Black, PhD, is a faculty member at the University of Kentucky, College of Pharmacy and Markey Cancer Center. Dr. Black received a PhD in biomedical science at the University of Florida and completed a postdoctoral fellowship at Duke University with Joseph Nevins, PhD. She is co-Founder of TrackFive Diagostics, Inc.
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.