Quality medicines are essential to any healthcare system and are the final goal of any pharmaceutical manufacturer. Unfortunately, as stated recently by the World Health Organization (WHO), one in 10 medical products circulating in low and middle-income countries is either substandard or falsified (SF products).1 Although the exact prevalence of SF products is unknown in high-income countries, it remains a major risk,2 especially because the internet market is difficult to control.3
BROADLY speaking, marketed medicines are expected to be compliant with local market specifications. These specifications ensure the correct active ingredient (identity testing) is present in the right amount (assay testing); the active pharmaceutical ingredient (API) is bioavailable (dissolution testing); and the amount of impurities is low enough (impurity testing). Although it is sometimes possible to visually identify SF products, only the pharmaceutical product testing following the complete pharmacopoeia monographs ensures the final quality and safety for the patient. However, this testing is lengthy and requires high-level equipment and staff. These limitations reduce the quantity of possibly tested samples and are impossible to implement for field testing during inspections. There is therefore an increasing need for fast, reliable and, if possible, portable solutions to detect SF products.
This webinar showcases the Growth Direct System; an RMM (Rapid Microbial Method) that improves on traditional membrane filtration, delivering increased accuracy, a faster time to result, enhanced data integrity compliance, and more control over the manufacturing process.
Key learning points:
Understand the benefits of full workflow microbiology quality control testing automation in radiopharmaceutical production
Learn about ITM’s implementation journey and considerations when evaluating the technology
Find out how the advanced optics and microcolony detection capabilities of Growth Direct® technology impact time to result (TTR).
Don’t miss your chance to learn from experts in the industry –Register for FREE
Can’t attend live? No worries – register to receive the recording post-event.
Various solutions have been proposed and are currently used in the field (eg, GPHF Minilab™), but the number of possibly tested samples remains relatively low due to the need for consumables and analysis time. Raman spectroscopy is increasingly used in the field of SF product testing due to its fast and non-destructive nature. Furthermore, it is possible to analyse samples directly through the blister (except for aluminium blisters). Since both the chemical and physical state of the sample can influence Raman spectroscopy, and the intensity of the Raman scattered signal is dependent on the quantity of scattering chemical bonds, large amounts of qualitative and quantitative information can be drawn from the samples.
Results
Perhaps the first legitimate question when challenging a suspect sample is: “Is the product what it is supposed to be?” This is because, in addition to intellectual property issues, qualitative chemical information is important from a public health point of view. The Raman spectrum of a finished pharmaceutical product is a unique fingerprint of the product. The quality and informative value of the signature depends on the equipment and interface between the spectrophotometer and the sample. Increased laser power and higher spectral resolution provides more resolved and intense spectra, enabling a finer analysis of the sample. Once obtained, the analyst must process the spectral signatures to authenticate the product (typically a pass/fail) or identify the API or combination of APIs. Authentication with Raman spectroscopy is often performed by comparing a previously built (or commercially available) spectral database using the correlation coefficient, Hit Quality Index4 or even p-value. This approach, using weak statistical tools, provides contrasting results and only discriminates largely different products such as no API or the presence of another API.5,6 Small differences between samples, such as discrimination of several generics, requires more advanced chemometrics and class-modelling tools such as Soft Independent Modelling of Class Analogy (SIMCA), which may provide better results. SIMCA uses a collection of spectra of the target class to model its distribution and build a defined probability confidence interval around it. Each new sample is then projected and the distance to the modelled class computed. Samples with distances inferior to a defined threshold value are considered as belonging to the target class, otherwise it is considered an outlier.
The main advantage of one-class modelling over classification algorithms (such as support vector machine or partial least squares) is that it only models the target class, enabling a more robust discrimination of new unknown spectra.7 In addition to the spectrophotometer performance, the interface with samples is also important. Indeed, if Raman signatures are obtained directly through transparent or even opaque plastic blisters, in cases of plastic bottle storage, conventional Raman spectrophotometers will likely return the spectral signature of the plastic bottle and possibly some spectral features of the inner product. To avoid this issue, the spectra can be measured using Spatially Offset Raman Spectroscopy (SORS).8 When performing SORS analyses, a point on the sample is illuminated and the spectrum measure is taken elsewhere (with a calibrated offset). The offset measure mainly constitutes the content (eg, pharmaceutical tablets) spectral features rather than those of the container (eg, plastic of the bottle).
Figure 1: A: Raman spectra of quinine sulphate tablets obtained directly on the tablet and through the container with and without SORS technology. The spectra were measured using Agilent’s Resolve spectrophotometer. The correlation coefficient of the SORS and no SORS spectra with the tablet spectrum were 0.93 and 0.08, respectively. B: Quinine sulphate tablet and container analysed. C: Raman spectra of paracetamol tablets obtained directly on the tablet and through the container with and without SORS technology. The spectra were measured using Agilent’s Resolve spectrophotometer. The correlation coefficient of the SORS and no SORS spectra with the tablet spectrum were 0.96 and 0.04, respectively. D: Paracetamol tablet and container analysed.
Although the technology isn’t new, Agilent (formerly Cobalt Light) recently made a handheld device available on the market under the name Resolve®. Figure 1 shows spectra recorded by the Resolve® on quinine sulphate and paracetamol samples, respectively, in plastic bottles with and without SORS. Results show the “no SORS” spectra are highly contaminated by the plastic features of the bottle and only small spectral features can be attributed to the sample. By contrast, SORS spectra show relatively clean sample spectra. Of note, the position of the sample in the container is crucial to obtain good quality spectra, enabling further analyses. Indeed, relatively close contact between the sample, the container and the spectrophotometer is required to obtain quality spectra. Another limitation of Raman spectroscopy is its poor sensibility and the high interference of fluorescence. To circumvent these two issues, Surface Enhanced Raman Spectroscopy (SERS) can be used. SERS has the capability to both enhance the Raman signal and quench fluorescence interference. Several papers have described the use of SERS substrates with handheld devices to detect the presence of APIs in suspect samples.9,10 However, both approaches needed the dissolution of a fraction of the sample and its mixing with metallic colloids. Therefore, its implementation for on-field analyses is limited due to the sample preparation and stability of the colloidal solutions that has yet to be assessed. In addition to the global spectral signature of the sample, Raman spectroscopy may enable the elucidation of the composition of the suspect tablets using hyperspectral imaging.11,12 Four falsified antimalarial samples were detected using handheld devices and exhibited the same global signature with no trace of the expected API (artemether/ lumefantrine and sulfadoxine/pyrimethamine). Hyperspectral imaging analyses were conducted, and the compositions were elucidated using multivariate curve analysis (MCR-ALS).
Figure 2: Images of the packaging of the analysed samples. The chemical composition was elucidated using Raman chemical imaging data and MCR-ALS data analysis. The two samples on the left showed similar composition and were considered as related cases, whereas the two samples on the right showed different chemical composition. All four samples exhibited similar average Raman signatures.
Results showed the presence of contaminants (sildenafil, ciprofloxacin HCl and ciprofloxacin HCl monohydrate) at trace levels (Figure 2). Presence of the same contaminants in different samples enabled grouping of the different cases and might aid further forensic investigations. Raman chemical imaging might also help guide future chemical and quantitative analyses to elucidate the nature of the present compounds.
Conclusions
Raman spectroscopy constitutes an essential part of the analyst’s toolbox to characterise and authenticate SF drugs. Raman spectra are relatively easy to interpret compared to near infrared (NIR) spectra, can be directly compared to databases, and inference is easier (eg, identification of a wrong API). Raman spectroscopy is less sensitive to physical factors than NIR, enabling analysis of generics with a single method; however, it is less powerful as an authenticating technique. Among vibrational spectroscopy techniques, Raman spectroscopy has the highest technical developments. These developments intend to overcome the previous limitations of the technique such as poor sensitivity (eg, SERS), fluorescence of samples (eg, SERDS)13 and the possibility to analyse samples through opaque containers (eg, SORS)14 with handheld devices opening the possibility of on-field analyses. However, handheld devices aren’t currently designed for quantitative analyses. Indeed, most devices have automatic analysis time reaching a minimal signal over noise ratio. This decreases the possibility to detect substandard medicines (correct API in a lower amount). Fortunately, several advances have been made (eg, Trutools™ add-on for the Thermo Fisher’s Truscan™) and portable devices offer the possibility to set the analysis time and therefore access quantitative information.
Biography
LAUREEN COÏC graduated with a Bachelor’s and Master’s degree in Chemistry from the University of Bretagne Occidentale in France. She also has a Master’s in Chemometrics. During and after her studies, she participated in several analytical chemistry research projects. She is now conducting a thesis funded by the FEDER, about the “development of vibrational spectroscopic techniques to fight against falsification”.
Sammons H, Choonara I. Substandard medicines: a greater problem than counterfeit medicines? BMJ Paediatrics Open. 2017;1(1).
Baert B, De Spiegeleer B. Quality analytics of internet pharmaceuticals. Analytical and Bioanalytical Chemistry. 2010;398(1):125-136.
Lee S, Lee H, Chung H. New discrimination method combining hit quality index based spectral matching and voting. Analytica Chimica Acta. 2013;758:58-65.
Dégardin K, Guillemain A, Roggo Y. Comprehensive Study of a Handheld Raman Spectrometer for the Analysis of Counterfeits of Solid-Dosage Form Medicines. Journal of Spectroscopy. 2017;2017:1-13.
United States Pharmacopoeial Convention, USP Technology Review: CBEx, (2017). http://www.usp.org/sites/default/files/usp/document/our-work/global-public-health/tr-report-cbex.pdf.
Pomerantsev A, Rodionova O. Multiclass partial least squares discriminant analysis: Taking the right way-A critical tutorial. Journal of Chemometrics. 2018;32(8):e3076.
Eliasson C, Matousek P. Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset Raman Spectroscopy. Analytical Chemistry. 2007;79(4):1696-1701.
Lanzarotta A, Lorenz L, Batson J, Flurer C. Development and implementation of a pass/fail field-friendly method for detecting sildenafil in suspect pharmaceutical tablets using a handheld Raman spectrometer and silver colloids. Journal of Pharmaceutical and Biomedical Analysis. 2017;146:420-425.
Tackman E, Trujillo M, Lockwood T, Merga G, Lieberman M, Camden J. Identification of substandard and falsified antimalarial pharmaceuticals chloroquine, doxycycline, and primaquine using surface-enhanced Raman scattering. Analytical Methods. 2018;10(38):4718-4722.
Rebiere H, Ghyselinck C, Lempereur L, Brenier C. Investigation of the composition of anabolic tablets using near infrared spectroscopy and Raman chemical imaging. Drug Testing and Analysis. 2015;8(3-4):370-377.
Rebiere H, Martin M, Ghyselinck C, Bonnet P, Brenier C. Raman chemical imaging for spectroscopic screening and direct quantification of falsified drugs. Journal of Pharmaceutical and Biomedical Analysis. 2018;148:316-323.
Assi S. Authenticating medicines with dual laser handheld Raman spectroscopy. European Pharmaceutical Review. 2016;21:30-34
Ellis D, Eccles R, Xu Y, Griffen J, Muhamadali H, Matousek P, Goodall I, Goodacre R. Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Scientific Reports. 2017;7:1-8.
The rest of this content is restricted - login or subscribe free to access
Thank you for visiting our website. To access this content in full you'll need to login. It's completely free to subscribe, and in less than a minute you can continue reading. If you've already subscribed, great - just login.
Why subscribe? Join our growing community of thousands of industry professionals and gain access to:
bi-monthly issues in print and/or digital format
case studies, whitepapers, webinars and industry-leading content
breaking news and features
our extensive online archive of thousands of articles and years of past issues
This website uses cookies to enable, optimise and analyse site operations, as well as to provide personalised content and allow you to connect to social media. By clicking "I agree" you consent to the use of cookies for non-essential functions and the related processing of personal data. You can adjust your cookie and associated data processing preferences at any time via our "Cookie Settings". Please view our Cookie Policy to learn more about the use of cookies on our website.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorised as ”Necessary” are stored on your browser as they are as essential for the working of basic functionalities of the website. For our other types of cookies “Advertising & Targeting”, “Analytics” and “Performance”, these help us analyse and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these different types of cookies. But opting out of some of these cookies may have an effect on your browsing experience. You can adjust the available sliders to ‘Enabled’ or ‘Disabled’, then click ‘Save and Accept’. View our Cookie Policy page.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Cookie
Description
cookielawinfo-checkbox-advertising-targeting
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertising & Targeting".
cookielawinfo-checkbox-analytics
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Analytics".
cookielawinfo-checkbox-necessary
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
This cookie is set by GDPR Cookie Consent WordPress Plugin. The cookie is used to remember the user consent for the cookies under the category "Performance".
PHPSESSID
This cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
viewed_cookie_policy
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
zmember_logged
This session cookie is served by our membership/subscription system and controls whether you are able to see content which is only available to logged in users.
Performance cookies are includes cookies that deliver enhanced functionalities of the website, such as caching. These cookies do not store any personal information.
Cookie
Description
cf_ob_info
This cookie is set by Cloudflare content delivery network and, in conjunction with the cookie 'cf_use_ob', is used to determine whether it should continue serving “Always Online” until the cookie expires.
cf_use_ob
This cookie is set by Cloudflare content delivery network and is used to determine whether it should continue serving “Always Online” until the cookie expires.
free_subscription_only
This session cookie is served by our membership/subscription system and controls which types of content you are able to access.
ls_smartpush
This cookie is set by Litespeed Server and allows the server to store settings to help improve performance of the site.
one_signal_sdk_db
This cookie is set by OneSignal push notifications and is used for storing user preferences in connection with their notification permission status.
YSC
This cookie is set by Youtube and is used to track the views of embedded videos.
Analytics cookies collect information about your use of the content, and in combination with previously collected information, are used to measure, understand, and report on your usage of this website.
Cookie
Description
bcookie
This cookie is set by LinkedIn. The purpose of the cookie is to enable LinkedIn functionalities on the page.
GPS
This cookie is set by YouTube and registers a unique ID for tracking users based on their geographical location
lang
This cookie is set by LinkedIn and is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
lidc
This cookie is set by LinkedIn and used for routing.
lissc
This cookie is set by LinkedIn share Buttons and ad tags.
vuid
We embed videos from our official Vimeo channel. When you press play, Vimeo will drop third party cookies to enable the video to play and to see how long a viewer has watched the video. This cookie does not track individuals.
wow.anonymousId
This cookie is set by Spotler and tracks an anonymous visitor ID.
wow.schedule
This cookie is set by Spotler and enables it to track the Load Balance Session Queue.
wow.session
This cookie is set by Spotler to track the Internet Information Services (IIS) session state.
wow.utmvalues
This cookie is set by Spotler and stores the UTM values for the session. UTM values are specific text strings that are appended to URLs that allow Communigator to track the URLs and the UTM values when they get clicked on.
_ga
This cookie is set by Google Analytics and is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. It stores information anonymously and assign a randomly generated number to identify unique visitors.
_gat
This cookies is set by Google Universal Analytics to throttle the request rate to limit the collection of data on high traffic sites.
_gid
This cookie is set by Google Analytics and is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visited in an anonymous form.
Advertising and targeting cookies help us provide our visitors with relevant ads and marketing campaigns.
Cookie
Description
advanced_ads_browser_width
This cookie is set by Advanced Ads and measures the browser width.
advanced_ads_page_impressions
This cookie is set by Advanced Ads and measures the number of previous page impressions.
advanced_ads_pro_server_info
This cookie is set by Advanced Ads and sets geo-location, user role and user capabilities. It is used by cache busting in Advanced Ads Pro when the appropriate visitor conditions are used.
advanced_ads_pro_visitor_referrer
This cookie is set by Advanced Ads and sets the referrer URL.
bscookie
This cookie is a browser ID cookie set by LinkedIn share Buttons and ad tags.
IDE
This cookie is set by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
li_sugr
This cookie is set by LinkedIn and is used for tracking.
UserMatchHistory
This cookie is set by Linkedin and is used to track visitors on multiple websites, in order to present relevant advertisement based on the visitor's preferences.
VISITOR_INFO1_LIVE
This cookie is set by YouTube. Used to track the information of the embedded YouTube videos on a website.