List view / Grid view

Next Generation Sequencing

 

Next-generation transcriptomic analysis in cancer vascular research

3 September 2015 | By Joseph W. Wragg and Roy Bicknell, University of Birmingham

Over the past decade significant advances have been made in the fields of genomic and transcriptomic profiling, inspired by the advent of next-generation sequencing (NGS). Yet despite the considerable promise of these new technologies, uptake has been slow. The focus of this review is the use of next-generation transcriptomic analysis…

Understanding early mouse embryonic development using single-cell mRNA Sequencing

3 July 2014 | By René Dirks and Hendrik Marks, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS)

Biomedical research often involves the use of cell lines that can be cultured in a laboratory. Individual cells within such cell lines often share a similar morphology. A remarkable exception are in vitro cultured mouse Embryonic Stem Cells (mESCs) – pluripotent cells derived from the blastocyst stage of the mouse…

Next generation sequencing: Application of next generation sequencing to preclinical cancer model profiling

15 December 2013 | By

Preclinical cancer models allow us to gain insight into therapeutic potential and mechanism of anti-cancer agents early in the drug discovery process. Whilst traditional array-based approaches have made a significant contribution to the characterisation of these models, the advent of next generation sequencing has revolutionised genomic research and is anticipated…

Next generation sequencing: Using RNAseq to identify anti-cancer targets in the tumour vasculature

15 December 2013 | By Klarke M. Sample and Roy Bicknell, University of Birmingham

It is possible to attack the vasculature within solid tumours and achieve an anti-cancer effect. In the last decade, a number of studies have utilised cDNA libraries, SAGE analysis and microarrays to identify potential drug targets in the tumour endothelium. Modern sequencing technologies are likely to be a far more…

Future trends in drug discovery technology

18 December 2012 | By Terry McCann, TJM Consultancy

The average cost to a major pharmaceutical company of developing a new drug is over USD 6 billion1. Herper1 observes that the pharmaceutical industry is gripped by rising failure rates and costs, and suggests that the cost of new drugs will be reduced by new technologies and deeper understanding of…

DNA sequencing technologies and emerging applications in drug discovery

13 December 2011 | By Nalini A.L. Mehta & David J. Dow, Molecular and Cellular Technologies, Platform Technology and Science, GlaxoSmithKline and Anthony M. Battram, Molecular and Cellular Technologies, Platform Technology and Science, GlaxoSmithKline & Department of Life Sciences, Imperial College London

In recent years, the development of Next Generation DNA Sequencing (NGS) technology has significantly impacted molecular biology research, resulting in many new insights and discoveries. NGS technology goes beyond traditional DNA sequencing with applications that reach across the central dogma of molecular biology from DNA to RNA and protein science.…

Next Generation Sequencing: Current realities in cancer biology

16 February 2011 | By Ross Sibson, Director of Research, Applied Cancer Biology Group, University of Liverpool

The rate of progress in molecular cell biological sciences has become dramatic. This is fuelled in part by developments in technology, none more so than in the field of nucleic acid sequencing. So-called Next Generation Sequencing Platforms promise to revolutionise our understanding of the importance of genetic differences on an…

PCR and personalised cancer medicine

16 December 2010 | By Frank McCaughan, MRC Career Development Fellow, MRC Laboratory of Molecular Biology

The delivery of personalised medicine is a key goal of modern cancer medicine and refers to the tailoring of anticancer therapy to the molecular characteristics of an individual tumour. To facilitate personalised medicine, it is important to have robust and reproducible means of gaining molecular information about a patient’s cancer…

The Sequencing Revolution: enabling personal genomics and personalised medicine

29 October 2010 | By Bhupinder Bhullar, Novartis Institute for Biomedical Research

It has been 10 years since the completion of the first draft of the human genome. Today, we are in the midst of a full assault on the human genetic code, racing to uncover the genetic mechanisms that affect disease, aging, happiness, violence ... and just about every imaginable human…

Send this to a friend