Whitepapers/App Notes/Posters

Application note: In situ Raman spectroscopy enables rapid optimisation of protein crystallisation conditions

0
SHARES

Posted: 20 December 2016 | | No comments yet

This application note explains how in situ Raman can improve process knowledge and ensure an efficient process that consistently makes quality product safely…

Raman spectroscopy is an established PAT for understanding crystallisation in small molecule active pharmaceutical ingredients (API). The Raman spectrum provides information on molecular structure and chemical composition which can be used to confirm API crystallinity, and identify polymorphs or amorphous content during API crystallisation. As an on-line PAT, Raman spectroscopy provides real-time information which can be used to understand how reactor conditions such as temperature, pH, agitation rate, or solvent affect the crystallisation process. On-line Raman allows for in-process corrections and a more thorough knowledge of the API crystallisation process.

 

ACCESS your FREE COPY

 


This report addresses the key factors shaping pharmaceutical formulation, including regulation, QC and analysis.

Access the full report now to discover the techniques, tools and innovations that are transforming pharmaceutical formulation, and learn how to position your organisation for long-term success.

What you’ll discover:

  • Key trends shaping the pharmaceutical formulation sector
  • Innovations leading progress in pharmaceutical formulation and how senior professionals can harness their benefits
  • Considerations and best practices when utilising QbD during formulation of oral solid dosage forms
  • And more!

Don’t miss your chance to access this exclusive report ! Access now – it’s free

Extension of Raman spectroscopy to biopharmaceuticals can impart many benefits. In situ Raman can improve process knowledge and ensure an efficient process that consistently makes quality product safely. Raman spectroscopy is an established in situ PAT of cell cultures and fermentations, enabling advanced feed control strategies. In downstream applications, Raman can be equally powerful. An application which has demonstrated feasibility in laboratory-scale studies is protein crystallisation. Similar to small molecules, protein crystallisation may be affected by temperature, pH, solvent, and concentration of species in the system. In this application note, we describe a study in which Raman spectroscopy was used to monitor a laboratory scale batch crystallisation of lysozyme. The goal of the study was to demonstrate a laboratory scale approach to enhance process understanding of protein crystallisation using lysozyme as a model protein. In situ Raman spectroscopy was used to investigate the effect of temperature, concentration of precipitating agent, time of crystallisation, and possible interactions between these factors.

This application note is restricted - login or subscribe free to access

Thank you for visiting our website. To access this content in full you'll need to login. It's completely free to subscribe, and in less than a minute you can continue reading. If you've already subscribed, great - just login.

Why subscribe? Join our growing community of thousands of industry professionals and gain access to:

  • bi-monthly issues in print and/or digital format
  • case studies, whitepapers, webinars and industry-leading content
  • breaking news and features
  • our extensive online archive of thousands of articles and years of past issues
  • ...And it's all free!

Click here to Subscribe today Login here

 

Leave a Reply

Your email address will not be published. Required fields are marked *

Share via
Share via